Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering

被引:20
作者
Wu, Zhijin [1 ]
Wu, Hao [2 ]
机构
[1] Brown Univ, Dept Biostat, Providence, RI 02806 USA
[2] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, 1518 Clifton Rd NE, Atlanta, GA 30322 USA
关键词
Gene expression; Single cell RNA-seq; Clustering; STEM; EXPRESSION; LANDSCAPE; CANCER;
D O I
10.1186/s13059-020-02027-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cell clustering is one of the most common routines in single cell RNA-seq data analyses, for which a number of specialized methods are available. The evaluation of these methods ignores an important biological characteristic that the structure for a population of cells is hierarchical, which could result in misleading evaluation results. In this work, we develop two new metrics that take into account the hierarchical structure of cell types. We illustrate the application of the new metrics in constructed examples as well as several real single cell datasets and show that they provide more biologically plausible results.
引用
收藏
页数:14
相关论文
共 50 条
[41]   Locality Sensitive Imputation for Single Cell RNA-Seq Data [J].
Moussa, Marmar ;
Mandoiu, Ion I. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2019, 26 (08) :822-835
[42]   Integration of single-cell RNA-seq and bulk RNA-seq to construct liver hepatocellular carcinoma stem cell signatures to explore their impact on patient prognosis and treatment [J].
Liu, Lixia ;
Zhang, Meng ;
Cui, Naipeng ;
Liu, Wenwen ;
Di, Guixin ;
Wang, Yanan ;
Xi, Xin ;
Li, Hao ;
Shen, Zhou ;
Gu, Miaomiao ;
Wang, Zichao ;
Jiang, Shan ;
Liu, Bin .
PLOS ONE, 2024, 19 (04)
[43]   The Advances of Single-Cell RNA-Seq in Kidney Immunology [J].
Zeng, Honghui ;
Yang, Xiaoqiang ;
Luo, Siweier ;
Zhou, Yiming .
FRONTIERS IN PHYSIOLOGY, 2021, 12
[44]   Recent Developments in Single-Cell RNA-Seq of Microorganisms [J].
Zhang, Yi ;
Gao, Jiaxin ;
Huang, Yanyi ;
Wang, Jianbin .
BIOPHYSICAL JOURNAL, 2018, 115 (02) :173-180
[45]   Multiobjective Deep Clustering and Its Applications in Single-cell RNA-seq Data [J].
Wang, Yunhe ;
Bian, Chuang ;
Wong, Ka-Chun ;
Li, Xiangtao ;
Yang, Shengxiang .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (08) :5016-5027
[46]   HNC: a hybrid neighbourhood-consensus clustering algorithm for single-cell RNA-seq data [J].
Das, Priyojit ;
Saha, Sujay .
INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2021, 25 (3-4) :161-180
[47]   scDFC: A deep fusion clustering method for single-cell RNA-seq data [J].
Hu, Dayu ;
Liang, Ke ;
Zhou, Sihang ;
Tu, Wenxuan ;
Liu, Meng ;
Liu, Xinwang .
BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
[48]   scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks [J].
Liu, Tianxiang ;
Jia, Cangzhi ;
Bi, Yue ;
Guo, Xudong ;
Zou, Quan ;
Li, Fuyi .
BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
[49]   SC3: consensus clustering of single-cell RNA-seq data [J].
Kiselev, Vladimir Yu ;
Kirschner, Kristina ;
Schaub, Michael T. ;
Andrews, Tallulah ;
Yiu, Andrew ;
Chandra, Tamir ;
Natarajan, Kedar N. ;
Reik, Wolf ;
Barahona, Mauricio ;
Green, Anthony R. ;
Hemberg, Martin .
NATURE METHODS, 2017, 14 (05) :483-+
[50]   scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data [J].
Wang, Shudong ;
Zhang, Yu ;
Zhang, Yulin ;
Wu, Wenhao ;
Ye, Lan ;
Li, Yunyin ;
Su, Jionglong ;
Pang, Shanchen .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163