Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering

被引:19
作者
Wu, Zhijin [1 ]
Wu, Hao [2 ]
机构
[1] Brown Univ, Dept Biostat, Providence, RI 02806 USA
[2] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, 1518 Clifton Rd NE, Atlanta, GA 30322 USA
关键词
Gene expression; Single cell RNA-seq; Clustering; STEM; EXPRESSION; LANDSCAPE; CANCER;
D O I
10.1186/s13059-020-02027-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cell clustering is one of the most common routines in single cell RNA-seq data analyses, for which a number of specialized methods are available. The evaluation of these methods ignores an important biological characteristic that the structure for a population of cells is hierarchical, which could result in misleading evaluation results. In this work, we develop two new metrics that take into account the hierarchical structure of cell types. We illustrate the application of the new metrics in constructed examples as well as several real single cell datasets and show that they provide more biologically plausible results.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Single cell RNA-seq data clustering using TF-IDF based methods [J].
Moussa, Marmar ;
Mandoiu, Ion I. .
BMC GENOMICS, 2018, 19
[32]   Single cell RNA-seq data clustering using TF-IDF based methods [J].
Marmar Moussa ;
Ion I. Măndoiu .
BMC Genomics, 19
[33]   A computational method to aid the design and analysis of single cell RNA-seq experiments for cell type identification [J].
Abrams, Douglas ;
Kumar, Parveen ;
Karuturi, R. Krishna Murthy ;
George, Joshy .
BMC BIOINFORMATICS, 2019, 20 (Suppl 11)
[34]   A computational method to aid the design and analysis of single cell RNA-seq experiments for cell type identification [J].
Douglas Abrams ;
Parveen Kumar ;
R. Krishna Murthy Karuturi ;
Joshy George .
BMC Bioinformatics, 20
[35]   SAFE-clustering: Single-cell Aggregated (from Ensemble) clustering for single-cell RNA-seq data [J].
Yang, Yuchen ;
Huh, Ruth ;
Culpepper, Houston W. ;
Lin, Yuan ;
Love, Michael I. ;
Li, Yun .
BIOINFORMATICS, 2019, 35 (08) :1269-1277
[36]   Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy [J].
Couturier, Charles P. ;
Ayyadhury, Shamini ;
Le, Phuong U. ;
Nadaf, Javad ;
Monlong, Jean ;
Riva, Gabriele ;
Allache, Redouane ;
Baig, Salma ;
Yan, Xiaohua ;
Bourgey, Mathieu ;
Lee, Changseok ;
Wang, Yu Chang David ;
Yong, V. Wee ;
Guiot, Marie-Christine ;
Najafabadi, Hamed ;
Misic, Bratislav ;
Antel, Jack ;
Bourque, Guillaume ;
Ragoussis, Jiannis ;
Petrecca, Kevin .
NATURE COMMUNICATIONS, 2020, 11 (01)
[37]   Improving replicability in single-cell RNA-Seq cell type discovery with Dune [J].
de Bezieux, Hector Roux ;
Street, Kelly ;
Fischer, Stephan ;
Van den Berge, Koen ;
Chance, Rebecca ;
Risso, Davide ;
Gillis, Jesse ;
Ngai, John ;
Purdom, Elizabeth ;
Dudoit, Sandrine .
BMC BIOINFORMATICS, 2024, 25 (01)
[38]   HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD) [J].
Chiu, Yen-Jung ;
Ni, Chung-En ;
Huang, Yen-Hua .
BMC MEDICAL GENOMICS, 2023, 16 (SUPPL 2)
[39]   Cardiovascular utility of single cell RNA-Seq [J].
Safabakhsh, Sina ;
Ma, Wei Feng ;
Miller, Clint L. L. ;
Laksman, Zachary .
CURRENT OPINION IN CARDIOLOGY, 2023, 38 (03) :193-200
[40]   An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data [J].
Sun, Xifang ;
Sun, Shiquan ;
Yang, Sheng .
CELLS, 2019, 8 (10)