Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering

被引:19
作者
Wu, Zhijin [1 ]
Wu, Hao [2 ]
机构
[1] Brown Univ, Dept Biostat, Providence, RI 02806 USA
[2] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, 1518 Clifton Rd NE, Atlanta, GA 30322 USA
关键词
Gene expression; Single cell RNA-seq; Clustering; STEM; EXPRESSION; LANDSCAPE; CANCER;
D O I
10.1186/s13059-020-02027-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cell clustering is one of the most common routines in single cell RNA-seq data analyses, for which a number of specialized methods are available. The evaluation of these methods ignores an important biological characteristic that the structure for a population of cells is hierarchical, which could result in misleading evaluation results. In this work, we develop two new metrics that take into account the hierarchical structure of cell types. We illustrate the application of the new metrics in constructed examples as well as several real single cell datasets and show that they provide more biologically plausible results.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] SCCLRR: A Robust Computational Method for Accurate Clustering Single Cell RNA-Seq Data
    Zhang, Wei
    Li, Yuanyuan
    Zou, Xiufen
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (01) : 247 - 256
  • [22] Evaluating imputation methods for single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    Yuan, Lang
    Sun, Zhaoguo
    Wang, Pingzhang
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [23] Consensus clustering of single-cell RNA-seq data by enhancing network affinity
    Cui, Yaxuan
    Zhang, Shaoqiang
    Liang, Ying
    Wang, Xiangyun
    Ferraro, Thomas N.
    Chen, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [24] scReClassify: post hoc cell type classification of single-cell rNA-seq data
    Kim, Taiyun
    Lo, Kitty
    Geddes, Thomas A.
    Kim, Hani Jieun
    Yang, Jean Yee Hwa
    Yang, Pengyi
    BMC GENOMICS, 2019, 20 (Suppl 9)
  • [25] Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma
    Tirosh, Itay
    Venteicher, Andrew S.
    Hebert, Christine
    Escalante, Leah E. .
    Patel, Anoop P.
    Yizhak, Keren
    Fisher, Jonathan M. .
    Rodman, Christopher
    Mount, Christopher
    Filbin, Mariella G.
    Neftel, Cyril
    Desai, Niyati
    Nyman, Jackson
    Izar, Benjamin
    Luo, Christina C.
    Francis, Joshua M. .
    Patel, Aanand A.
    Onozato, Maristela L.
    Riggi, Nicolo
    Livak, Kenneth J.
    Gennert, Dave
    Satija, Rahul
    Nahed, Brian V. .
    Curry, William T.
    Martuza, Robert L.
    Mylvaganam, Ravindra
    Iafrate, A. John
    Frosch, Matthew P.
    Golub, Todd R.
    Rivera, Miguel N. .
    Getz, Gad
    Rozenblatt-Rosen, Orit
    Cahill, Daniel P.
    Monje, Michelle
    Bernstein, Bradley E. .
    Louis, David N.
    Regev, Aviv
    Suva, Mario L.
    NATURE, 2016, 539 (7628) : 309 - +
  • [26] MR-seq: measuring a single cell's transcriptome repeatedly by RNA-seq
    Yang, Lu
    Ma, Zhaochun
    Cao, Chen
    Zhang, Yuhao
    Wu, Xinglong
    Lee, Raymond
    Hu, Boqiang
    Wen, Lu
    Ge, Hao
    Huang, Yanyi
    Lao, Kaiqin
    Tang, Fuchou
    SCIENCE BULLETIN, 2017, 62 (06) : 391 - 398
  • [27] EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data
    Teschendorff, Andrew E.
    Zhu, Tianyu
    Breeze, Charles E.
    Beck, Stephan
    GENOME BIOLOGY, 2020, 21 (01) : 1
  • [28] SAIC: an iterative clustering approach for analysis of single cell RNA-seq data
    Yang, Lu
    Liu, Jiancheng
    Lu, Qiang
    Riggs, Arthur D.
    Wu, Xiwei
    BMC GENOMICS, 2017, 18
  • [29] SAIC: an iterative clustering approach for analysis of single cell RNA-seq data
    Lu Yang
    Jiancheng Liu
    Qiang Lu
    Arthur D. Riggs
    Xiwei Wu
    BMC Genomics, 18
  • [30] Dirichlet process mixture models for single-cell RNA-seq clustering
    Adossa, Nigatu A.
    Rytkonen, Kalle T.
    Elo, Laura L.
    BIOLOGY OPEN, 2022, 11 (04):