Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering

被引:20
作者
Wu, Zhijin [1 ]
Wu, Hao [2 ]
机构
[1] Brown Univ, Dept Biostat, Providence, RI 02806 USA
[2] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, 1518 Clifton Rd NE, Atlanta, GA 30322 USA
关键词
Gene expression; Single cell RNA-seq; Clustering; STEM; EXPRESSION; LANDSCAPE; CANCER;
D O I
10.1186/s13059-020-02027-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cell clustering is one of the most common routines in single cell RNA-seq data analyses, for which a number of specialized methods are available. The evaluation of these methods ignores an important biological characteristic that the structure for a population of cells is hierarchical, which could result in misleading evaluation results. In this work, we develop two new metrics that take into account the hierarchical structure of cell types. We illustrate the application of the new metrics in constructed examples as well as several real single cell datasets and show that they provide more biologically plausible results.
引用
收藏
页数:14
相关论文
共 38 条
[1]   Automated cell lineage construction - A rapid method to analyze clonal development established with murine neural progenitor cells [J].
Al-Kofahi, O ;
Radke, RJ ;
Goderie, SK ;
Shen, Q ;
Temple, S ;
Roysam, B .
CELL CYCLE, 2006, 5 (03) :327-335
[2]  
[Anonymous], 2012, ELEMENTS INFORM THEO
[3]   Unravelling biology and shifting paradigms in cancer with single-cell sequencing [J].
Baslan, Timour ;
Hicks, James .
NATURE REVIEWS CANCER, 2017, 17 (09) :557-569
[4]  
Carlson CA, 2012, NAT METHODS, V9, P78, DOI [10.1038/NMETH.1781, 10.1038/nmeth.1781]
[5]   A survey of human brain transcriptome diversity at the single cell level [J].
Darmanis, Spyros ;
Sloan, Steven A. ;
Zhang, Ye ;
Enge, Martin ;
Caneda, Christine ;
Shuer, Lawrence M. ;
Gephart, Melanie G. Hayden ;
Barres, Ben A. ;
Quake, Stephen R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (23) :7285-7290
[6]  
Duo Angelo, 2018, F1000Res, V7, P1141, DOI 10.12688/f1000research.15666.3
[7]   scBatch: batch-effect correction of RNA-seq data through sample distance matrix adjustment [J].
Fei, Teng ;
Yu, Tianwei .
BIOINFORMATICS, 2020, 36 (10) :3115-3123
[8]   Genomic variability within an organism exposes its cell lineage tree [J].
Frumkin, D ;
Wasserstrom, A ;
Kaplan, S ;
Feige, U ;
Shapiro, E .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (05) :382-394
[9]   Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors [J].
Haghverdi, Laleh ;
Lun, Aaron T. L. ;
Morgan, Michael D. ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :421-+
[10]   The Extent and Consequences of P-Hacking in Science [J].
Head, Megan L. ;
Holman, Luke ;
Lanfear, Rob ;
Kahn, Andrew T. ;
Jennions, Michael D. .
PLOS BIOLOGY, 2015, 13 (03)