Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering

被引:19
|
作者
Wu, Zhijin [1 ]
Wu, Hao [2 ]
机构
[1] Brown Univ, Dept Biostat, Providence, RI 02806 USA
[2] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, 1518 Clifton Rd NE, Atlanta, GA 30322 USA
关键词
Gene expression; Single cell RNA-seq; Clustering; STEM; EXPRESSION; LANDSCAPE; CANCER;
D O I
10.1186/s13059-020-02027-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cell clustering is one of the most common routines in single cell RNA-seq data analyses, for which a number of specialized methods are available. The evaluation of these methods ignores an important biological characteristic that the structure for a population of cells is hierarchical, which could result in misleading evaluation results. In this work, we develop two new metrics that take into account the hierarchical structure of cell types. We illustrate the application of the new metrics in constructed examples as well as several real single cell datasets and show that they provide more biologically plausible results.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering
    Zhijin Wu
    Hao Wu
    Genome Biology, 21
  • [2] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    BMC BIOINFORMATICS, 2018, 19
  • [3] Review of single-cell RNA-seq data clustering for cell-type identification and characterization
    Zhang, Shixiong
    Li, Xiangtao
    Lin, Jiecong
    Lin, Qiuzhen
    Wong, Ka-Chun
    RNA, 2023, 29 (05) : 517 - 530
  • [4] Accounting for technical noise in single-cell RNA-seq experiments
    Brennecke, Philip
    Anders, Simon
    Kim, Jong Kyoung
    Kolodziejczyk, Aleksandra A.
    Zhang, Xiuwei
    Proserpio, Valentina
    Baying, Bianka
    Benes, Vladimir
    Teichmann, Sarah A.
    Marioni, John C.
    Heisler, Marcus G.
    NATURE METHODS, 2013, 10 (11) : 1093 - 1095
  • [5] Impact of similarity metrics on single-cell RNA-seq data clustering
    Kim, Taiyun
    Chen, Irene Rui
    Lin, Yingxin
    Wang, Andy Yi-Yang
    Yang, Jean Yee Hwa
    Yang, Pengyi
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (06) : 2316 - 2326
  • [6] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [7] An interpretable framework for clustering single-cell RNA-Seq datasets
    Jesse M. Zhang
    Jue Fan
    H. Christina Fan
    David Rosenfeld
    David N. Tse
    BMC Bioinformatics, 19
  • [8] A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data
    Zhu, Xiaoshu
    Li, Hong-Dong
    Xu, Yunpei
    Guo, Lilu
    Wu, Fang-Xiang
    Duan, Guihua
    Wang, Jianxin
    GENES, 2019, 10 (02)
  • [9] Single-cell RNA-seq data clustering: A survey with performance comparison study
    Li, Ruiyi
    Guan, Jihong
    Zhou, Shuigeng
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2020, 18 (04)
  • [10] Diffusion Kernel based Fast Adaptive Clustering of Single Cell RNA-seq Data
    Kausar, Samina
    Xu Huahu
    Mehmood, Rashid
    Iqbal, Muhammad Shahid
    ICBBT 2019: 2019 11TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL TECHNOLOGY, 2019, : 86 - 93