Approximation of the capillarity problem by an augmented Lagrangian method

被引:1
作者
Witomski, P [1 ]
机构
[1] INST MECAN GRENOBLE,LMC,F-38041 GRENOBLE 09,FRANCE
关键词
capillarity; numerical approximation; optimization;
D O I
10.1007/BF02142811
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an algorithm to compute an approximation of capillary surfaces in a gravitational field. This algorithm is based on a decomposition-coordination method by augmented lagrangians and the discretization is done using the finite element method. We study the convergence of the algorithm and the error of discretization for the axisymmetric case; some numerical results are given. This method can be generalized to a two-dimensional space.
引用
收藏
页码:321 / 346
页数:26
相关论文
共 50 条
[41]   A new partial splitting augmented Lagrangian method for minimizing the sum of three convex functions [J].
Cao, Cuixia ;
Han, Deren ;
Xu, Lingling .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) :5449-5457
[42]   Fixed-order H∞ control design via a partially augmented Lagrangian method [J].
Apkarian, P ;
Noll, D ;
Tuan, HD .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2003, 13 (12) :1137-1148
[43]   A Distributed Second-Order Augmented Lagrangian Method for Distributed Model Predictive Control [J].
Ahmadi, Shervin Parvini ;
Hansson, Anders .
IFAC PAPERSONLINE, 2021, 54 (06) :192-199
[44]   The Laplace Parallel Plates Problem in Capillarity Theory [J].
Rajat Bhatnagar ;
Robert Finn .
Journal of Mathematical Fluid Mechanics, 2018, 20 :1681-1699
[45]   The Laplace Parallel Plates Problem in Capillarity Theory [J].
Bhatnagar, Rajat ;
Finn, Robert .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (04) :1681-1699
[46]   A combined capillarity and elasticity problem for a thin plate [J].
Olives, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (02) :480-493
[47]   A hybridized Lagrangian relaxation and simulated annealing method for the course timetabling problem [J].
Gunawan, Aldy ;
Ng, Kien Ming ;
Poh, Kim Leng .
COMPUTERS & OPERATIONS RESEARCH, 2012, 39 (12) :3074-3088
[48]   A nonlinear augmented Lagrangian for constrained minimax problems [J].
He, Suxiang ;
Zhou, Shumin .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) :4567-4579
[49]   On the convergence of augmented Lagrangian strategies for nonlinear programming [J].
Andreani, Roberto ;
Ramos, Alberto ;
Ribeiro, Ademir A. ;
Secchin, Leonardo D. ;
Velazco, Ariel R. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) :1735-1765
[50]   Separable approximations and decomposition methods for the augmented Lagrangian [J].
Tappenden, Rachael ;
Richatrik, Peter ;
Bueke, Burak .
OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (03) :643-668