Piecewise weighted pseudo almost periodicity of impulsive integro-differential equations with fractional order 1 < α < 2

被引:0
作者
Gu, Chuan-Yun [1 ]
Li, Hong-Xu [2 ]
机构
[1] Sichuan Univ Arts & Sci, Dept Math, Dazhou 635000, Sichuan, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
关键词
Piecewise weighted pseudo almost periodicity; Impulsive integro-differential equations; Fractional order; Mild solution; Banach contraction mapping principle; EXISTENCE; STABILITY;
D O I
10.1007/s43037-019-00004-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give the existence theorem of piecewise weighted pseudo almost periodic mild solutions for impulsive integro-differential equations with fractional order 1 < alpha < 2, where A is a linear closed and densely defined operator of sectorial type in a complex Banach space X. The main results are obtained by Banach contraction mapping principle. An example is given to illustrate the main results.
引用
收藏
页码:487 / 502
页数:16
相关论文
共 26 条
  • [1] Pseudo-almost periodic solutions of a class of semilinear fractional differential equations
    Agarwal R.P.
    Cuevas C.
    Soto H.
    [J]. Journal of Applied Mathematics and Computing, 2011, 37 (1-2) : 625 - 634
  • [2] Existence and discrete approximation for optimization problems governed by fractional differential equations
    Bai, Yunru
    Baleanu, Dumitru
    Wu, Guo-Cheng
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 338 - 348
  • [3] Bazhlekova E., 2001, THESIS
  • [4] Cuesta E, 2007, DISCRETE CONTIN DYN, V2007, P277
  • [5] S-asymptotically ω-periodic solutions of semilinear fractional integro-differential equations
    Cuevas, Claudio
    de Souza, Julio Cesar
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 865 - 870
  • [6] Fink AM, 1974, LECT NOTES MATH
  • [7] Henriquez H.R., 2011, ISRN MATH ANAL
  • [8] Almost periodic type solutions of some differential equations with piecewise constant argument
    Hong, JL
    Obaya, R
    Sanz, A
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (06) : 661 - 688
  • [9] Kilbas AA, 2006, N HOLLAND MATH STUDI, V204
  • [10] Liu J., 2013, Advances in Difference Equations, V2013, P11, DOI DOI 10.1186/1687-1847-2013-11