Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application

被引:145
作者
Chatterjee, Saptarshi [1 ]
Bandyopadhyay, Arghya [1 ]
Sarkar, Keka [1 ]
机构
[1] Univ Kalyani, Dept Microbiol, Nadia, W Bengal, India
关键词
Bacterial Growth; magnetic nanoparticle; gold nanoparticle; Cytotoxicity; SUPERPARAMAGNETIC NANOPARTICLES; SIZE; MRI;
D O I
10.1186/1477-3155-9-34
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Nanoparticle-metal oxide and gold represents a new class of important materials that are increasingly being developed for use in research and health related activities. The biological system being extremely critical requires the fundamental understanding on the influence of inorganic nanoparticles on cellular growth and functions. Our study was aimed to find out the effect of iron oxide (Fe3O4), gold (Au) nanoparticles on cellular growth of Escherichia coli (E. coli) and also try to channelize the obtained result by functionalizing the Au nanoparticle for further biological applications. Result: Fe3O4 and Au nanoparticles were prepared and characterized using Transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). Preliminary growth analysis data suggest that the nanoparticles of iron oxide have an inhibitory effect on E. coli in a concentration dependant manner, whereas the gold nanoparticle directly showed no such activity. However the phase contrast microscopic study clearly demonstrated that the effect of both Fe3O4 and Au nanoparticle extended up to the level of cell division which was evident as the abrupt increase in bacterial cell length. The incorporation of gold nanoparticle by bacterial cell was also observed during microscopic analysis based on which glutathione functionalized gold nanoparticle was prepared and used as a vector for plasmid DNA transport within bacterial cell. Conclusion: Altogether the study suggests that there is metal nanoparticle-bacteria interaction at the cellular level that can be utilized for beneficial biological application but significantly it also posses potential to produce ecotoxicity, challenging the ecofriendly nature of nanoparticles.
引用
收藏
页数:7
相关论文
共 21 条
  • [1] Bandyopadhyay A, 2011, CURR SCI INDIA, V101, P210
  • [2] Functionalisation of magnetic nanoparticles for applications in biomedicine
    Berry, CC
    Curtis, ASG
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (13) : R198 - R206
  • [3] Quantum dot bioconjugates for ultrasensitive nonisotopic detection
    Chan, WCW
    Nie, SM
    [J]. SCIENCE, 1998, 281 (5385) : 2016 - 2018
  • [4] Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors
    Chertok, Beata
    Moffat, Bradford A.
    David, Allan E.
    Yu, Faquan
    Bergemann, Christian
    Ross, Brian D.
    Yang, Victor C.
    [J]. BIOMATERIALS, 2008, 29 (04) : 487 - 496
  • [5] Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution
    Chouly, C
    Pouliquen, D
    Lucet, I
    Jeune, JJ
    Jallet, P
    [J]. JOURNAL OF MICROENCAPSULATION, 1996, 13 (03) : 245 - 255
  • [6] COUVREUR P, 1995, EUR J PHARM BIOPHARM, V41, P2
  • [7] DOUGLAS SJ, 1987, CRIT REV THER DRUG, V3, P233
  • [8] Anatase TiO2 nanocomposites for antimicrobial coatings
    Fu, GF
    Vary, PS
    Lin, CT
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (18) : 8889 - 8898
  • [9] In vivo cancer targeting and imaging with semiconductor quantum dots
    Gao, XH
    Cui, YY
    Levenson, RM
    Chung, LWK
    Nie, SM
    [J]. NATURE BIOTECHNOLOGY, 2004, 22 (08) : 969 - 976
  • [10] Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications
    Gupta, AK
    Gupta, M
    [J]. BIOMATERIALS, 2005, 26 (18) : 3995 - 4021