Mycothiol regulates and is regulated by a thiol-specific antisigma factor RsrA and σR in Streptomyces coelicolor

被引:62
作者
Park, Joo-Hong
Roe, Jung-Hye [1 ]
机构
[1] Seoul Natl Univ, Sch Biol Sci, Seoul 151742, South Korea
关键词
D O I
10.1111/j.1365-2958.2008.06191.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mycothiol (MSH) is a small thiol molecule with a cysteine-ligated disaccharide structure found in actinomycetes that include streptomycetes and mycobacteria. In Streptomyces coelicolor, a model organism for antibiotic production and differentiation, the amount of MSH is under the control of a sigma factor sigma(R), which is regulated by an antisigma factor RsrA with a thiol-disulphide redox switch. We found that the first gene (mshA) in the biosynthetic pathway for MSH and the gene for amidase (mca) that participates in detoxifying mycothiol-reactive drugs are under direct control of sigma(R). The sigma(R) target genes are induced not only by a thiol oxidant diamide, but also by alkylating agents that cause a rapid decrease in MSH. Expression of the sigma(R) regulon was also elevated in MSH-deficient mutants, suggesting that a decrease in the level of MSH is a natural intracellular trigger for sigma(R) activation. We found that MSH was capable of reducing RsrA to bind sigma(R), whereas glutathione was not. These results support a proposal that the RsrA-sigma(R) system senses the intracellular level of reduced MSH, and that MSH serves as a natural modulator of the transcription system for its own replenishment in addition to being a redox buffer and drug detoxifier.
引用
收藏
页码:861 / 870
页数:10
相关论文
共 37 条
[1]   Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv:: a [4Fe-4S] cluster co-ordinating protein disulphide reductase [J].
Alam, Md. Suhail ;
Garg, Saurabh K. ;
Agrawal, Pushpa .
MOLECULAR MICROBIOLOGY, 2007, 63 (05) :1414-1431
[2]  
[Anonymous], 2000, Practical Streptomyces genetics, DOI DOI 10.1111/J.1365-2427.2007.01876.X
[3]   Redox-dependent changes in RsrA, an anti-sigma factor in Streptomyces coelicolor:: Zinc release and disulfide bond formation [J].
Bae, JB ;
Park, JH ;
Hahn, MY ;
Kim, MS ;
Roe, JH .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 335 (02) :425-435
[4]   Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J].
Bentley, SD ;
Chater, KF ;
Cerdeño-Tárraga, AM ;
Challis, GL ;
Thomson, NR ;
James, KD ;
Harris, DE ;
Quail, MA ;
Kieser, H ;
Harper, D ;
Bateman, A ;
Brown, S ;
Chandra, G ;
Chen, CW ;
Collins, M ;
Cronin, A ;
Fraser, A ;
Goble, A ;
Hidalgo, J ;
Hornsby, T ;
Howarth, S ;
Huang, CH ;
Kieser, T ;
Larke, L ;
Murphy, L ;
Oliver, K ;
O'Neil, S ;
Rabbinowitsch, E ;
Rajandream, MA ;
Rutherford, K ;
Rutter, S ;
Seeger, K ;
Saunders, D ;
Sharp, S ;
Squares, R ;
Squares, S ;
Taylor, K ;
Warren, T ;
Wietzorrek, A ;
Woodward, J ;
Barrell, BG ;
Parkhill, J ;
Hopwood, DA .
NATURE, 2002, 417 (6885) :141-147
[5]   Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics [J].
Buchmeier, NA ;
Newton, GL ;
Koledin, T ;
Fahey, RC .
MOLECULAR MICROBIOLOGY, 2003, 47 (06) :1723-1732
[6]   A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria [J].
Campbell, Elizabeth A. ;
Greenwell, Roger ;
Anthony, Jennifer R. ;
Wang, Sheng ;
Lim, Lionel ;
Das, Kalyan ;
Sofia, Heidi J. ;
Donohue, Timothy J. ;
Darst, Seth A. .
MOLECULAR CELL, 2007, 27 (05) :793-805
[7]   A developmentally regulated catalase required for proper differentiation and osmoprotection of Streptomyces coelicolor [J].
Cho, YH ;
Lee, EJ ;
Roe, JH .
MOLECULAR MICROBIOLOGY, 2000, 35 (01) :150-160
[8]  
FAHEY RC, 1987, METHOD ENZYMOL, V143, P85
[9]   High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes [J].
Flett, F ;
Mersinias, V ;
Smith, CP .
FEMS MICROBIOLOGY LETTERS, 1997, 155 (02) :223-229
[10]   PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin [J].
Gust, B ;
Challis, GL ;
Fowler, K ;
Kieser, T ;
Chater, KF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (04) :1541-1546