ON THE INVISCID LIMIT OF THE NAVIER-STOKES EQUATIONS

被引:41
作者
Constantin, Peter [1 ]
Kukavica, Igor [2 ]
Vicol, Vlad [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Inviscid limit; Navier-Stokes equations; Euler equations; boundary layer; ZERO-VISCOSITY LIMIT; VANISHING VISCOSITY; ANALYTIC SOLUTIONS; PRANDTL EQUATIONS; BOUNDARY-LAYER; VORTICITY EQUATIONS; EULER EQUATIONS; ILL-POSEDNESS; HALF-SPACE; EXISTENCE;
D O I
10.1090/S0002-9939-2015-12638-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the convergence in the L-2 norm, uniformly in time, of the Navier-Stokes equations with Dirichlet boundary conditions to the Euler equations with slip boundary conditions. We prove that if the Oleinik conditions of no back-flow in the trace of the Euler flow, and of a lower bound for the Navier-Stokes vorticity is assumed in a Kato-like boundary layer, then the inviscid limit holds.
引用
收藏
页码:3075 / 3090
页数:16
相关论文
共 43 条
[1]  
Alexandre R., 2012, ARXIV12035991
[2]  
[Anonymous], 2010, COMMUN MATH SCI
[3]  
[Anonymous], 2013, ARXIV13050773
[4]   The vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow [J].
Bardos, Claude ;
Titi, Edriss S. ;
Wiedemann, Emil .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (15-16) :757-760
[5]   Mathematics and turbulence: where do we stand? [J].
Bardos, Claude W. ;
Titi, Edriss S. .
JOURNAL OF TURBULENCE, 2013, 14 (03) :42-76
[6]  
Batchelor G. K, 1999, INTRO FLUID DYNAMICS, DOI DOI 10.1016/0017-9310(68)90038-0
[7]  
Caflisch R. E., 2000, EXISTENCE AND SINGUL, V80, P733, DOI DOI 10.1002/1521-4001(200011)80:11/12
[8]   Existence and uniqueness for the Prandtl equations [J].
Cannone, M ;
Lombardo, MC ;
Sammartino, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (03) :277-282
[9]  
Constantin P, 1996, INDIANA U MATH J, V45, P67
[10]   INVISCID LIMIT FOR VORTEX PATCHES [J].
CONSTANTIN, P ;
WU, JH .
NONLINEARITY, 1995, 8 (05) :735-742