scGAC: a graph attentional architecture for clustering single-cell RNA-seq data

被引:55
作者
Cheng, Yi [1 ]
Ma, Xiuli [1 ]
机构
[1] Peking Univ, Sch Artificial Intelligence, Key Lab Machine Percept MOE, Beijing 100871, Peoples R China
关键词
EMBRYOS;
D O I
10.1093/bioinformatics/btac099
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Emerging single-cell RNA sequencing (scRNA-seq) technology empowers biological research at cellular level. One of the most crucial scRNA-seq data analyses is clustering single cells into subpopulations. However, the high variability, high sparsity and high dimensionality of scRNA-seq data pose lots of challenges for clustering analysis. Although many single-cell clustering methods have been recently developed, few of them fully exploit latent relationship among cells, thus leading to suboptimal clustering results. Results: Here, we propose a novel unsupervised clustering method, scGAC (single-cell Graph Attentional Clustering), for scRNA-seq data. scGAC firstly constructs a cell graph and refines it by network denoising. Then, it learns clustering-friendly representation of cells through a graph attentional autoencoder, which propagates information across cells with different weights and captures latent relationship among cells. Finally, scGAC adopts a self-optimizing method to obtain the cell clusters. Experiments on 16 real scRNA-seq datasets show that scGAC achieves excellent performance and outperforms existing state-of-art single-cell clustering methods.
引用
收藏
页码:2187 / 2193
页数:7
相关论文
共 35 条
[1]  
[Anonymous], 2002, J. Mach. Learn. Res
[2]   The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing [J].
Bjorklund, Asa K. ;
Forkel, Marianne ;
Picelli, Simone ;
Konya, Viktoria ;
Theorell, Jakob ;
Friberg, Danielle ;
Sandberg, Rickard ;
Mjosberg, Jenny .
NATURE IMMUNOLOGY, 2016, 17 (04) :451-+
[3]   Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing [J].
Blase, Fernando H. ;
Cao, Xiaoyi ;
Zhong, Sheng .
GENOME RESEARCH, 2014, 24 (11) :1787-1796
[4]   Structural Deep Clustering Network [J].
Bo, Deyu ;
Wang, Xiao ;
Shi, Chuan ;
Zhu, Meiqi ;
Lu, Emiao ;
Cui, Peng .
WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, :1400-1410
[5]   Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity [J].
Brown, Chrysothemis C. ;
Gudjonson, Herman ;
Pritykin, Yuri ;
Deep, Deeksha ;
Lavallee, Vincent-Philippe ;
Mendoza, Alejandra ;
Fromme, Rachel ;
Mazutis, Linas ;
Ariyan, Charlotte ;
Leslie, Christina ;
Pe'er, Dana ;
Rudensky, Alexander Y. .
CELL, 2019, 179 (04) :846-+
[6]   Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer [J].
Chung, Woosung ;
Eum, Hye Hyeon ;
Lee, Hae-Ock ;
Lee, Kyung-Min ;
Lee, Han-Byoel ;
Kim, Kyu-Tae ;
Ryu, Han Suk ;
Kim, Sangmin ;
Lee, Jeong Eon ;
Park, Yeon Hee ;
Kan, Zhengyan ;
Han, Wonshik ;
Park, Woong-Yang .
NATURE COMMUNICATIONS, 2017, 8
[7]   Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth [J].
Guo, Minzhe ;
Du, Yina ;
Gokey, Jason J. ;
Ray, Samriddha ;
Bell, Sheila M. ;
Adam, Mike ;
Sudha, Parvathi ;
Perl, Anne Karina ;
Deshmukh, Hitesh ;
Potter, S. Steven ;
Whitsett, Jeffrey A. ;
Xu, Yan .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing [J].
Guo, Xinyi ;
Zhang, Yuanyuan ;
Zheng, Liangtao ;
Zheng, Chunhong ;
Song, Jintao ;
Zhang, Qiming ;
Kang, Boxi ;
Liu, Zhouzerui ;
Jin, Liang ;
Xing, Rui ;
Gao, Ranran ;
Zhang, Lei ;
Dong, Minghui ;
Hu, Xueda ;
Ren, Xianwen ;
Kirchhoff, Dennis ;
Roider, Helge Gottfried ;
Yan, Tiansheng ;
Zhang, Zemin .
NATURE MEDICINE, 2018, 24 (07) :978-+
[9]  
Habib N, 2017, NAT METHODS, V14, P955, DOI [10.1038/NMETH.4407, 10.1038/nmeth.4407]
[10]  
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830