Optimized Fuzzy Control with Genetic Algorithms and Differential Evolution for Tracking the Trajectories of an Ankle Prosthesis

被引:1
作者
Ambrocio-Delgado, Rocio [1 ]
Tellez-Velazquez, Arturo [2 ]
Lugo-Gonzalez, Esther [3 ]
Espinosa-Garcia, Francisco [1 ]
机构
[1] Univ Tecnol Mixteca, Div Estudios Posgrad, Carretera Acatlima Km 2-5, Oaxaca 69007, Oaxaca, Mexico
[2] Univ Tecnol Mixteca, Catedras Conacyt, Carretera Acatlima Km 2-5, Oaxaca 69007, Oaxaca, Mexico
[3] Univ Tecnol Mixteca, Inst Elect & Mecatron, Carretera Acatlima Km 2-5, Oaxaca 69007, Oaxaca, Mexico
来源
ADVANCES IN SOFT COMPUTING (MICAI 2021), PT II | 2021年 / 13068卷
关键词
Fuzzy control; Genetic algorithms; Differential evolution; Trajectory;
D O I
10.1007/978-3-030-89820-5_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents a comparison between three Mandani controllers (trial and error, optimized with Genetic Algorithms (GA), and Differential Evolution (DE)) and a traditional PID controller in the trajectory tracking application in the sagittal/frontal planes of an ankle, considering a disturbance that simulates the existence of an irregularity in the walking surface. The controller rulebase design uses only the error signals and the error derivative. For the implementation of the mentioned controllers, a co-simulation is presented using the MatLAb fuzzy Toolbox, Simulink PID block of Matlab, and Adams View. From the results obtained, a comparison is made to determine the computation time and the position error to choose the best one for the tracking the trajectories of an ankle prosthesis.
引用
收藏
页码:325 / 336
页数:12
相关论文
共 23 条
[11]   ANFIS based automatic voltage regulator with hybrid learning algorithm [J].
Mitra, P. ;
Maulik, S. ;
Chowdhury, S. P. ;
Chowdhury, S. .
2007 42ND INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE, VOLS 1-3, 2007, :397-401
[12]  
Nguyen H.T, 2003, 1 COURSE FUZZY NEURA, V1
[13]  
Ogata K, 2002, MODERN CONTROL ENG, V4
[14]   Design of optimized cascade fuzzy controller based on differential evolution: Simulation studies and practical insights [J].
Oh, Sung-Kwun ;
Kim, Wook-Dong ;
Pedrycz, Witold .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (03) :520-532
[15]   Optimization of fuzzy-logic speed controller for DC drive system with elastic joints [J].
Orlowska-Kowalska, T ;
Szabat, K .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2004, 40 (04) :1138-1144
[16]   Speed control of permanent magnet synchronous motors using fuzzy controller based on genetic algorithms [J].
Ozturk, Nihat ;
Celik, Emre .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2012, 43 (01) :889-898
[17]  
Parkinson A., 2013, APPL THEORY, P2
[18]   Optimum synthesis of fuzzy logic controller for trajectory tracking by differential evolution [J].
Pishkenari, H. Nejat ;
Mahboobi, S. H. ;
Alasty, A. .
SCIENTIA IRANICA, 2011, 18 (02) :261-267
[19]   THE 3-DIMENSIONAL KINEMATICS AND FLEXIBILITY CHARACTERISTICS OF THE HUMAN ANKLE AND SUBTALAR JOINTS .1. KINEMATICS [J].
SIEGLER, S ;
CHEN, J ;
SCHNECK, CD .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1988, 110 (04) :364-373
[20]   FUZZY IDENTIFICATION OF SYSTEMS AND ITS APPLICATIONS TO MODELING AND CONTROL [J].
TAKAGI, T ;
SUGENO, M .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1985, 15 (01) :116-132