CO2 capture using nanoporous TiO(OH)2/tetraethylenepentamine

被引:41
|
作者
Irani, Maryam [1 ]
Gasem, Khaled A. M. [1 ]
Dutcher, Bryce [1 ]
Fan, Maohong [1 ]
机构
[1] Univ Wyoming, Dept Chem & Petr Engn, Laramie, WY 82071 USA
关键词
CO2; capture; Nanoporous titanium oxyhydrate; Sorption; Kinetics; CARBON-DIOXIDE; TETRAETHYLENEPENTAMINE; SEPARATION; KINETICS; SUPPORT; NANOPARTICLES; ADSORPTION; TIO(OH)(2); BENTONITE; SORBENTS;
D O I
10.1016/j.fuel.2016.06.129
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, an inorganic-organic CO2 sorbent was prepared by immobilizing tetraethylenepentamine (TEPA) onto nanoporous titanium oxyhydrate (TiO(OH)(2)). The prepared sorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analyses. At the optimal TEPA loading of 60 wt% on TiO(OH)(2), the CO2 sorption capacity reached 3.1 mmol CO2/g-sorbent for 1 vol% CO2 in N-2 along with similar to 1 vol% H2O at 60 degrees C. Studies of adsorption kinetics and thermodynamics showed that the activation energies for CO2 adsorption and desorption of TiO(OH)(2)/TEPA are 19.6 kJ/mol and 51.1 kJ/mol, respectively. This low CO2 desorption activation energy means a high CO2 desorption rate, thus a low CO2 capture cost. Accordingly, the sorbent has the potential to be used for capturing ultra-dilute CO2 from gas mixtures. (C) 2016 Published by Elsevier Ltd.
引用
收藏
页码:601 / 608
页数:8
相关论文
共 50 条
  • [41] PREPARATION OF ZEOLITIC MATERIAL USING NATURAL CLINOPTILOLITE FOR CO2 CAPTURE
    Sanchez-Ruiz, A.
    Robles-Gutierrez, I
    Espejel-Ayala, F.
    REVISTA MEXICANA DE INGENIERIA QUIMICA, 2018, 17 (02): : 573 - 585
  • [42] The Rapid Decay of CO2 Capture Capacity of CaO Derived from Ca(OH)2
    Fan, H.
    Hu, G.
    Huang, H.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2015, 37 (22) : 2408 - 2414
  • [43] Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture
    Wang, Xia
    Guo, Qingjie
    Kong, Tongtong
    CHEMICAL ENGINEERING JOURNAL, 2015, 273 : 472 - 480
  • [44] Simultaneous CO2 capture and amino acid production using bipolar membrane electrodialysis (BMED)
    Jiang, Chenxiao
    Zhang, Yilue
    Feng, Hongyan
    Wang, Qiuyue
    Wang, Yaoming
    Xu, Tongwen
    JOURNAL OF MEMBRANE SCIENCE, 2017, 542 : 264 - 271
  • [45] Enhancement of CO2 capture by using synthesized nano-zeolite
    Thi-Huong Pham
    Lee, Byeong-Kyu
    Kim, Jitae
    Lee, Chi-Hyeon
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2016, 64 : 220 - 226
  • [46] CO2 Capture With Absorbents of Tertiary Amine Functionalized Nano-SiO2
    Lai, Nanjun
    Zhu, Qingru
    Qiao, Dongyu
    Chen, Ke
    Tang, Lei
    Wang, Dongdong
    He, Wei
    Chen, Yuemei
    Yu, Tong
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [47] Ordered nanoporous carbon for increasing CO2 capture
    Yoo, Hye-Min
    Lee, Seul-Yi
    Park, Soo-Jin
    JOURNAL OF SOLID STATE CHEMISTRY, 2013, 197 : 361 - 365
  • [48] Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6
    Liu, Yamin
    Shi, Jingjin
    Chen, Jie
    Ye, Qing
    Pan, Hua
    Shao, Zhenhua
    Shi, Yao
    MICROPOROUS AND MESOPOROUS MATERIALS, 2010, 134 (1-3) : 16 - 21
  • [49] Synergy tetraethylenepentamine and diethanolamine impregnated within silica nanotubes derived from natural halloysite for efficient CO2 capture
    Li, Xiaoyu
    Li, Haoran
    Zhao, Xueqi
    Zhao, Yanrong
    Zhang, Bo
    Zhao, Keping
    Peng, Kang
    JOURNAL OF CLEANER PRODUCTION, 2024, 434
  • [50] Interfacial control of polyHIPE with nano-TiO2 particles and polyethylenimine toward actual application in CO2 capture
    Wang, Quanyong
    Ma, Hongjiao
    Chen, Jian
    Du, Zhongjie
    Mi, Jianguo
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2017, 5 (03): : 2807 - 2814