Computational investigation of multifunctional MOFs for adsorption and membrane-based separation of CF4/CH4, CH4/H2, CH4/N2, and N2/H2 mixtures

被引:9
作者
Demir, Hakan [1 ]
Keskin, Seda [1 ]
机构
[1] Koc Univ, Dept Chem & Biol Engn, TR-34450 Istanbul, Turkey
基金
欧洲研究理事会;
关键词
METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE; GAS-ADSORPTION; SIMULATIONS; HYDROGEN; PERFORMANCES; FLEXIBILITY; EQUILIBRIA; NITROGEN; METHANE;
D O I
10.1039/d2me00130f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ease of functionalization of metal-organic frameworks (MOFs) can unlock unprecedented opportunities for gas adsorption and separation applications as the functional groups can impart favorable/unfavorable regions/interactions for the desired/undesired adsorbates. In this study, the effects of the presence of multiple functional groups in MOFs on their CF4/CH4, CH4/H-2, CH4/N-2, and N-2/H-2 separation performances were computationally investigated combining grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. The most promising adsorbents showing the best combinations of selectivity, working capacity, and regenerability were identified for each gas separation. 15, 13, and 16 out of the top 20 MOFs identified for the CH4/H-2, CH4/N-2, and N-2/H-2 adsorption-based separation, respectively, were found to have -OCH3 groups as one of the functional groups. The biggest improvements in CF4/CH4, CH4/H-2, CH4/N-2, and N-2/H-2 selectivities were found to be induced by the presence of -OCH3-OCH3 groups in MOFs. For CH4/H-2 separation, MOFs with two and three functionalized linkers were the best adsorbent candidates while for N-2/H-2 separation, all the top 20 materials involve two functional groups. Membrane performances of the MOFs were also studied for CH4/H-2 and CH4/N-2 separation and the results showed that MOFs having -F-NH2 and -F-OCH3 functional groups present the highest separation performances considering both the membrane selectivity and permeability.
引用
收藏
页码:1707 / 1721
页数:15
相关论文
共 67 条
[1]   Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship [J].
Adil, Karim ;
Belmabkhout, Youssef ;
Pillai, Renjith S. ;
Cadiau, Amandine ;
Bhatt, Prashant M. ;
Assen, Ayalew H. ;
Maurin, Guillaume ;
Eddaoudi, Mohamed .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (11) :3402-3430
[2]   An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage [J].
Allendorf, Mark D. ;
Hulvey, Zeric ;
Gennett, Thomas ;
Ahmed, Alauddin ;
Autrey, Tom ;
Camp, Jeffrey ;
Cho, Eun Seon ;
Furukawa, Hiroyasu ;
Haranczyk, Maciej ;
Head-Gordon, Martin ;
Jeong, Sohee ;
Karkamkar, Abhi ;
Liu, Di-Jia ;
Long, Jeffrey R. ;
Meihaus, Katie R. ;
Nayyar, Iffat H. ;
Nazarov, Roman ;
Siegel, Donald J. ;
Stavila, Vitalie ;
Urban, Jeffrey J. ;
Veccham, Srimukh Prasad ;
Wood, Brandon C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (10) :2784-2812
[3]   Molecular Simulations of MOF Membranes and Performance Predictions of MOF/Polymer Mixed Matrix Membranes for CO2/CH4 Separations [J].
Altintas, Cigdem ;
Keskin, Seda .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (02) :2739-2750
[4]   Computer simulations of 4240 MOF membranes for H2/CH4 separations: insights into structure-performance relations [J].
Altintas, Cigdem ;
Avci, Gokay ;
Daglar, Hilal ;
Gulcay, Ezgi ;
Erucar, Ilknur ;
Keskin, Seda .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (14) :5836-5847
[5]   High-Throughput Computational Screening of the Metal Organic Framework Database for CH4/H2 Separations [J].
Altintas, Cigdem ;
Erucar, Ilknur ;
Keskin, Seda .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) :3668-3679
[6]   Combined GCMC, MD, and DFT Approach for Unlocking the Performances of COFs for Methane Purification [J].
Altundal, Omer Faruk ;
Haslak, Zeynep Pinar ;
Keskin, Seda .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (35) :12999-13012
[7]   Large-Scale Computational Screening of Metal Organic Framework (MOF) Membranes and MOF-Based Polymer Membranes for H2/N2 Separations [J].
Azar, Ayda Nemati Vesali ;
Velioglu, Sadiye ;
Keskin, Seda .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (10) :9525-9536
[8]   Data-driven design of metal-organic frameworks for wet flue gas CO2 capture [J].
Boyd, Peter G. ;
Chidambaram, Arunraj ;
Garcia-Diez, Enrique ;
Ireland, Christopher P. ;
Daff, Thomas D. ;
Bounds, Richard ;
Gladysiak, Andrzej ;
Schouwink, Pascal ;
Moosavi, Seyed Mohamad ;
Maroto-Valer, M. Mercedes ;
Reimer, Jeffrey A. ;
Navarro, Jorge A. R. ;
Woo, Tom K. ;
Garcia, Susana ;
Stylianou, Kyriakos C. ;
Smit, Berend .
NATURE, 2019, 576 (7786) :253-+
[9]   PATH-INTEGRAL SIMULATIONS OF MIXED PARA-D-2 AND ORTHO-D-2 CLUSTERS - THE ORIENTATIONAL EFFECTS [J].
BUCH, V .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (10) :7610-7629
[10]   Effect of the molecular interactions on the separation of nonpolar mixtures using Cu-BTC metal-organic framework [J].
Calero, Sofia ;
Jose Gutierrez-Sevillano, Juan ;
Garcia-Perez, Elena .
MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 165 :79-83