Graphene for batteries, supercapacitors and beyond

被引:1029
作者
El-Kady, Maher F. [1 ,2 ,3 ]
Shao, Yuanlong [1 ,2 ,4 ]
Kaner, Richard B. [1 ,2 ,5 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[3] Cairo Univ, Fac Sci, Dept Chem, Giza 12613, Egypt
[4] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[5] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
关键词
HIGH-PERFORMANCE; REDUCED GRAPHENE; MICRO-SUPERCAPACITORS; CARBON NANOTUBE; QUANTUM DOTS; HIGHLY EFFICIENT; ENERGY-STORAGE; SOLID-STATE; OXIDE; ELECTRODE;
D O I
10.1038/natrevmats.2016.33
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene has recently enabled the dramatic improvement of portable electronics and electric vehicles by providing better means for storing electricity. In this Review, we discuss the current status of graphene in energy storage and highlight ongoing research activities, with specific emphasis placed on the processing of graphene into electrodes, which is an essential step in the production of devices. We calculate the maximum energy density of graphene supercapacitors and outline ways for future improvements. We also discuss the synthesis and assembly of graphene into macrostructures, ranging from 0D quantum dots, 1D wires, 2D sheets and 3D frameworks, to potentially 4D self-folding materials that allow the design of batteries and supercapacitors with many new features that do not exist in current technology.
引用
收藏
页数:14
相关论文
共 122 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/NNANO.2015.40, 10.1038/nnano.2015.40]
[2]   Copper Nanowire-Graphene Core-Shell Nanostructure for Highly Stable Transparent Conducting Electrodes [J].
Ahn, Yumi ;
Jeong, Youngjun ;
Lee, Donghwa ;
Lee, Youngu .
ACS NANO, 2015, 9 (03) :3125-3133
[3]   On the Gelation of Graphene Oxide [J].
Bai, Hua ;
Li, Chun ;
Wang, Xiaolin ;
Shi, Gaoquan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) :5545-5551
[4]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/nnano.2010.8, 10.1038/NNANO.2010.8]
[5]   Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents [J].
Bi, Hengchang ;
Xie, Xiao ;
Yin, Kuibo ;
Zhou, Yilong ;
Wan, Shu ;
He, Longbing ;
Xu, Feng ;
Banhart, Florian ;
Sun, Litao ;
Ruoff, Rodney S. .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (21) :4421-4425
[6]   Graphene Oxide Framework Materials: Theoretical Predictions and Experimental Results [J].
Burress, Jacob W. ;
Gadipelli, Srinivas ;
Ford, Jamie ;
Simmons, Jason M. ;
Zhou, Wei ;
Yildirim, Taner .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (47) :8902-8904
[7]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926
[8]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[9]   L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries [J].
Chang, Kun ;
Chen, Weixiang .
ACS NANO, 2011, 5 (06) :4720-4728
[10]   Enhanced Hot-Carrier Luminescence in Multilayer Reduced Graphene Oxide Nanospheres [J].
Chen, Qi ;
Zhang, Chunfeng ;
Xue, Fei ;
Zhou, Yong ;
Li, Wei ;
Wang, Ye ;
Tu, Wenguang ;
Zou, Zhigang ;
Wang, Xiaoyong ;
Xiao, Min .
SCIENTIFIC REPORTS, 2013, 3