A note on the regularity criteria for the Navier-Stokes equations

被引:6
作者
Guo, Zhengguang [1 ]
Gala, Sadek [2 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Zhejiang, Peoples R China
[2] Jazan Univ, Coll Sci, Dept Math, Jazan, Saudi Arabia
关键词
Navier-Stokes equations; Regularity criterion; A priori estimates; WEAK SOLUTIONS; PRESSURE; GRADIENT; TERMS;
D O I
10.1016/j.aml.2011.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the regularity problem for 3D Navier-Stokes equations in a bounded domain with smooth boundary. A new sufficient condition which guarantees the regularity of weak solutions on the quotient del p/ (1 + |u|(delta)(1) + |del u|(delta)(2)) for the Navier-Stokes equations is established. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:305 / 309
页数:5
相关论文
共 24 条
[21]   Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain [J].
Zhou, Y .
MATHEMATISCHE ANNALEN, 2004, 328 (1-2) :173-192
[22]  
Zhou Y, 2006, Z ANGEW MATH PHYS, V57, P384, DOI 10.1007/s00033-005-0021-x
[23]   On the regularity of the solutions of the Navier-Stokes equations via one velocity component [J].
Zhou, Yong ;
Pokorny, Milan .
NONLINEARITY, 2010, 23 (05) :1097-1107
[24]   On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component [J].
Zhou, Yong ;
Pokorny, Milan .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)