A note on the regularity criteria for the Navier-Stokes equations

被引:6
作者
Guo, Zhengguang [1 ]
Gala, Sadek [2 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Zhejiang, Peoples R China
[2] Jazan Univ, Coll Sci, Dept Math, Jazan, Saudi Arabia
关键词
Navier-Stokes equations; Regularity criterion; A priori estimates; WEAK SOLUTIONS; PRESSURE; GRADIENT; TERMS;
D O I
10.1016/j.aml.2011.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the regularity problem for 3D Navier-Stokes equations in a bounded domain with smooth boundary. A new sufficient condition which guarantees the regularity of weak solutions on the quotient del p/ (1 + |u|(delta)(1) + |del u|(delta)(2)) for the Navier-Stokes equations is established. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:305 / 309
页数:5
相关论文
共 24 条
[11]  
Leray J., 1931, J MATH PURE APPL, V12, P1
[12]   Regularity criteria for the Navier-Stokes equations involving the ratio pressure-gradient of velocity [J].
Nunez, Manuel .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (03) :323-331
[13]   PARTIAL REGULARITY OF SOLUTIONS TO NAVIER-STOKES EQUATIONS [J].
SCHEFFER, V .
PACIFIC JOURNAL OF MATHEMATICS, 1976, 66 (02) :535-552
[14]  
SERRIN J, 1962, ARCH RATION MECH AN, V9, P187
[15]   THE REGULARITY THEORY OF THE NONSTATIONARY NAVIER-STOKES EQUATIONS [J].
SOHR, H .
MATHEMATISCHE ZEITSCHRIFT, 1983, 184 (03) :359-375
[17]   Gradient estimation on Navier-Stokes equations [J].
Tian, G ;
Xin, ZP .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1999, 7 (02) :221-257
[18]  
VONWAHL W, 1986, P SYMP PURE MATH, V45, P497
[19]   A new regularity criterion for weak solutions to the Navier-Stokes equations [J].
Zhou, Y .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (11) :1496-1514
[20]   On regularity criteria in terms of pressure for the Navier-Stokes equations in R3 [J].
Zhou, Y .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (01) :149-156