A note on the regularity criteria for the Navier-Stokes equations

被引:6
作者
Guo, Zhengguang [1 ]
Gala, Sadek [2 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Zhejiang, Peoples R China
[2] Jazan Univ, Coll Sci, Dept Math, Jazan, Saudi Arabia
关键词
Navier-Stokes equations; Regularity criterion; A priori estimates; WEAK SOLUTIONS; PRESSURE; GRADIENT; TERMS;
D O I
10.1016/j.aml.2011.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the regularity problem for 3D Navier-Stokes equations in a bounded domain with smooth boundary. A new sufficient condition which guarantees the regularity of weak solutions on the quotient del p/ (1 + |u|(delta)(1) + |del u|(delta)(2)) for the Navier-Stokes equations is established. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:305 / 309
页数:5
相关论文
共 24 条
[1]  
[Anonymous], 2002, Methods Appl. Anal.
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]   Regularity Criteria for the Three-dimensional Navier-Stokes Equations [J].
Cao, Chongsheng ;
Titi, Edriss S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2643-2661
[4]  
da Veiga HB, 2000, J MATH FLUID MECH, V2, P99
[5]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[6]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[7]  
GUO Z, 2010, REGULARITY CRI UNPUB
[8]   Remarks on logarithmical regularity criteria for the Navier-Stokes equations [J].
Guo, Zhengguang ;
Gala, Sadek .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (06)
[9]  
Hopf E., 1951, Math. Nachr., V4, P213, DOI [/10.1002/mana.3210040121, DOI 10.1002/MANA.3210040121]
[10]   Bilinear estimates in BMO and the Navier-Stokes equations [J].
Kozono, H ;
Taniuchi, Y .
MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (01) :173-194