High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting

被引:76
作者
Han, Yang [1 ]
Zhang, Jian [1 ]
Hu, Run [2 ]
Xu, Dongyan [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL CELLS; WASTE HEAT; TEMPERATURE; GELATION; COMPLEXATION; TRANSITION; CONVERSION; ENTROPY;
D O I
10.1126/sciadv.abl5318
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Low-grade heat exists ubiquitously in the environment. Thermogalvanic cells (TGCs) are promising for converting the widespread low-grade heat directly into electricity owing to relatively high thermopowers of redox reactions. This work reports polarized electrolytes with ultrahigh thermopowers of -8.18 mV K-1 for n-type and 9.62 mV K-1 for p-type. The electrolyte consists of I-/I3- redox couple, methylcellulose, and KCl. Thermoresponsive methylcellulose leads to polarization switching from n-type to p-type above a transition temperature due to the strong hydrophobic interaction between methylcellulose and I3- ions. The giant thermopowers can be attributed to the simultaneously enhanced entropy change and concentration difference of redox couple enabled by the gelation of methylcellulose and KCl-induced complexation. The p-type TGC with the optimized electrolyte achieves a normalized maximum power density of 0.36 mW m(-2) K-2, which is far superior to other reported I-/I(3-)based TGCs. This work demonstrates cost-effective, high-thermopower polarized electrolytes for low-grade heat harvesting.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy [J].
Abraham, Theodore J. ;
MacFarlane, Douglas R. ;
Baughman, Ray H. ;
Jin, Liyu ;
Li, Na ;
Pringle, Jennifer M. .
ELECTROCHIMICA ACTA, 2013, 113 :87-93
[2]   High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting [J].
Abraham, Theodore J. ;
MacFarlane, Douglas R. ;
Pringle, Jennifer M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (09) :2639-2645
[3]   Seebeck coefficients in ionic liquids -prospects for thermo-electrochemical cells [J].
Abraham, Theodore J. ;
MacFarlane, Douglas R. ;
Pringle, Jennifer M. .
CHEMICAL COMMUNICATIONS, 2011, 47 (22) :6260-6262
[4]   Huge Seebeck coefficients in nonaqueous electrolytes [J].
Bonetti, M. ;
Nakamae, S. ;
Roger, M. ;
Guenoun, P. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (11)
[5]   Review of Liquid-Based Systems to Recover Low-Grade Waste Heat for Electrical Energy Generation [J].
Cheng, Chun ;
Dai, Yawen ;
Yu, Jie ;
Liu, Chang ;
Wang, Sijia ;
Feng, Shien Ping ;
Ni, Meng .
ENERGY & FUELS, 2021, 35 (01) :161-175
[6]   THE TEMPERATURE COEFFICIENTS OF ELECTRODE POTENTIALS - THE ISOTHERMAL AND THERMAL COEFFICIENTS - THE STANDARD IONIC ENTROPY OF ELECTROCHEMICAL TRANSPORT OF THE HYDROGEN ION [J].
DEBETHUNE, AJ ;
LICHT, TS ;
SWENDEMAN, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1959, 106 (07) :616-625
[7]   Liquid-state thermocells: Opportunities and challenges for low-grade heat harvesting [J].
Duan, Jiangjiang ;
Yu, Boyang ;
Huang, Liang ;
Hu, Bin ;
Xu, Ming ;
Feng, Guang ;
Zhou, Jun .
JOULE, 2021, 5 (04) :768-779
[8]   P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting [J].
Duan, Jiangjiang ;
Yu, Boyang ;
Liu, Kang ;
Li, Jia ;
Yang, Peihua ;
Xie, Wenke ;
Xue, Guobin ;
Liu, Rong ;
Wang, Hui ;
Zhou, Jun .
NANO ENERGY, 2019, 57 :473-479
[9]   Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest [J].
Duan, Jiangjiang ;
Feng, Guang ;
Yu, Boyang ;
Li, Jia ;
Chen, Ming ;
Yang, Peihua ;
Feng, Jiamao ;
Liu, Kang ;
Zhou, Jun .
NATURE COMMUNICATIONS, 2018, 9
[10]   Thermo-electrochemical cells for waste heat harvesting - progress and perspectives [J].
Dupont, M. F. ;
MacFarlane, D. R. ;
Pringle, J. M. .
CHEMICAL COMMUNICATIONS, 2017, 53 (47) :6288-6302