The Basics of Information Geometry

被引:15
作者
Caticha, Ariel [1 ]
机构
[1] SUNY Albany, Dept Phys, Albany, NY 12222 USA
来源
BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2014) | 2015年 / 1641卷
关键词
Entropic dynamics; Quantum Theory; Maximum Entropy;
D O I
10.1063/1.4905960
中图分类号
O59 [应用物理学];
学科分类号
摘要
To what extent can we distinguish one probability distribution from another? Are there quantitative measures of distinguishability? The goal of this tutorial is to approach such questions by introducing the notion of the "distance" between two probability distributions and exploring some basic ideas of such an "information geometry".
引用
收藏
页码:15 / 26
页数:12
相关论文
共 20 条
[1]  
Amari S.-I., 2000, Translations of mathematical monographs
[2]  
Amari S.-I, 1985, Differential-geometrical methods in statistics
[3]  
[Anonymous], 1981, TRANSL MATH MONOGRAP
[4]  
[Anonymous], 1997, Geometric Foundations of Asymptotic Inference
[5]  
[Anonymous], PHYS REV D
[6]  
[Anonymous], MAXIMUM ENTROPY BAYE
[7]  
Atkinson Colin, 1981, SANKHYA A, P345
[8]   Statistical inference, Occam's razor, and statistical mechanics on the space of probability distributions [J].
Balasubramanian, V .
NEURAL COMPUTATION, 1997, 9 (02) :349-368
[9]   DISSIPATION IN MANY-BODY SYSTEMS - GEOMETRIC APPROACH BASED ON INFORMATION-THEORY [J].
BALIAN, R ;
ALHASSID, Y ;
REINHARDT, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 131 (1-2) :1-+
[10]   AN EXTENDED CENCOV CHARACTERIZATION OF THE INFORMATION METRIC [J].
CAMPBELL, LL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (01) :135-141