Feature Selection With Fuzzy-Rough Minimum Classification Error Criterion

被引:83
|
作者
Wang, Changzhong [1 ]
Qian, Yuhua [2 ]
Ding, Weiping [3 ]
Fan, Xiaodong [1 ]
机构
[1] Bohai Univ, Dept Math, Jinzhou 121000, Peoples R China
[2] Shanxi Univ, Sch Comp & Informat Technol, Taiyuan 030006, Peoples R China
[3] Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Rough sets; Feature extraction; Error analysis; Classification algorithms; Data models; Task analysis; Fuzzy sets; Dependency function; feature selection; fuzzy inner product; fuzzy rough set; ATTRIBUTE REDUCTION; UNCERTAINTY MEASURES; DECISION-MAKING; MAX-DEPENDENCY; SET; INFORMATION; RELEVANCE;
D O I
10.1109/TFUZZ.2021.3097811
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classical fuzzy rough set often uses fuzzy rough dependency as an evaluation function of feature selection. However, this function only retains the maximum membership degree of a sample to one decision class, it cannot describe the classification error. Therefore, in this article, a novel criterion function for feature selection is proposed to overcome this weakness. To characterize the classification error rate, we first introduce a class of irreflexive and symmetric fuzzy binary relations to redefine the concepts of fuzzy rough approximations. Then, we propose a novel concept of dependency: inner product dependency to describe the classification error and construct a criterion function to evaluate the importance of candidate features. The proposed criterion function not only can maintain a maximum dependency function, but also guarantees the minimum classification error. The experimental analysis shows that the proposed criterion function is effective for datasets with a large overlap between different categories.
引用
收藏
页码:2930 / 2942
页数:13
相关论文
共 50 条
  • [31] An intuitionistic fuzzy-rough set model and its application to feature selection
    Tiwari, Anoop Kumar
    Shreevastava, Shivam
    Subbiah, Karthikeyan
    Som, T.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4969 - 4979
  • [32] A Laplace Distribution-based Fuzzy-rough Feature Selection Algorithm
    Han, Xiaomeng
    Qu, Yanpeng
    Deng, Ansheng
    PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 776 - 781
  • [33] Using Fuzzy-Rough Set Feature Selection for Feature Construction based on Genetic Programming
    Mahanipour, Afsaneh
    Nezamabadi-pour, Hossein
    Nikpour, Bahareh
    2018 3RD CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC2018), VOL 3, 2018, : 58 - 63
  • [34] Fuzzy-rough Classifier Ensemble Selection
    Diao, Ren
    Shen, Qiang
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 1516 - 1522
  • [35] FRCT: fuzzy-rough classification trees
    Rajen B. Bhatt
    M. Gopal
    Pattern Analysis and Applications, 2008, 11 : 73 - 88
  • [36] FRCT: fuzzy-rough classification trees
    Bhatt, Rajen B.
    Gopal, M.
    PATTERN ANALYSIS AND APPLICATIONS, 2008, 11 (01) : 73 - 88
  • [37] A new feature selection criterion for fuzzy classification
    Almeida, R. J.
    Silva, C. A.
    Sousa, J. M. C.
    2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 437 - +
  • [38] Fuzzy-Rough Nearest Neighbour Classification
    Jensen, Richard
    Cornelis, Chris
    TRANSACTIONS ON ROUGH SETS XIII, 2011, 6499 : 56 - +
  • [39] An Efficient Gaussian Kernel Based Fuzzy-Rough Set Approach for Feature Selection
    Ghosh, Soumen
    Prasad, P. S. V. S. Sai
    Rao, C. Raghavendra
    MULTI-DISCIPLINARY TRENDS IN ARTIFICIAL INTELLIGENCE, (MIWAI 2016), 2016, 10053 : 38 - 49
  • [40] Improved feature selection algorithm with fuzzy-rough sets on compact computational domain
    Bhatt, RB
    Gopal, M
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2005, 34 (04) : 485 - 505