A class of second-order McKean-Vlasov stochastic evolution equations driven by fractional Brownian motion and Poisson jumps

被引:5
作者
McKibben, Mark A. [1 ]
Webster, Micah [2 ]
机构
[1] West Chester Univ, Dept Math, 25 Univ Ave, W Chester, PA 19383 USA
[2] Goucher Coll, Ctr Data Math & Computat Sci, 1021 Dulaney Valley Rd, Baltimore, MD 21204 USA
关键词
Stochastic evolution equation; McKean-Vlasov; Fractional Brownian motion; Second-order equation; Poisson jumps; Cosine family; DIFFERENTIAL-EQUATIONS; DIFFUSION; EXISTENCE; DELAY;
D O I
10.1016/j.camwa.2019.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on a class of second-order McKean-Vlasov stochastic evolution equations driven by a fractional Brownian motion and Poisson jumps. Specifically, we allow nonlinearities and the jump term to depend not only of the state of the solution, but also on the corresponding probability law of the state. The global existence and uniqueness of mild solutions is established under various growth conditions, and a related stability result is discussed. An example is presented to illustrate the applicability of the theory. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:391 / 406
页数:16
相关论文
共 37 条
[11]  
Dawson D. A., 1987, Stochastics, V20, P247, DOI 10.1080/17442508708833446
[13]  
Duncan TE, 2002, Stoch. Dyn., V2, P225, DOI [DOI 10.1142/S0219493702000340, 10.1142/S0219493702000340]
[14]  
Fattorini HO., 1985, Second order linear differential equations in Banach spaces
[15]  
Goldstein JA., 1974, AEQUATIONES MATH, V11, P201, DOI DOI 10.1007/BF01832857
[16]  
GRAHAM C, 1992, ANN I H POINCARE-PR, V28, P393
[17]   MCKEAN-VLASOV ITO-SKOROHOD EQUATIONS, AND NONLINEAR DIFFUSIONS WITH DISCRETE JUMP SETS [J].
GRAHAM, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 40 (01) :69-82
[18]   A parabolic stochastic differential equation with fractional Brownian motion input [J].
Grecksch, W ;
Anh, VV .
STATISTICS & PROBABILITY LETTERS, 1999, 41 (04) :337-346
[19]   On a McKean-Vlasov stochastic integro-differential evolution equation of Sobolev-type [J].
Keck, DN ;
McKibben, MA .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2003, 21 (05) :1115-1139
[20]  
Kunita H., 1990, CAMBRIDGE STUDIES AD, V24