Hamilton-Jacobi mechanics from pseudo-supersymmetry

被引:25
作者
Townsend, Paul K. [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
关键词
D O I
10.1088/0264-9381/25/4/045017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
For a general mechanical system, it is shown that each solution of the Hamilton Jacobi equation defines an N=2 pseudo-supersymmetric extension of the system, such that the usual relation of the momenta to Hamilton's principal function is the 'BPS' condition for preservation of 1/2 pseudo-supersymmetry. The examples of the relativistic and non-relativistic particle, in a general potential, are worked through in detail and used to discuss the relation to cosmology and to supersymmetric quantum mechanics.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Hamilton-Jacobi Skeletons
    Kaleem Siddiqi
    Sylvain Bouix
    Allen Tannenbaum
    Steven W. Zucker
    International Journal of Computer Vision, 2002, 48 : 215 - 231
  • [22] HAMILTON-JACOBI EQUATION
    ROSENBLO.PC
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1971, 43 (04) : 245 - &
  • [23] Hamilton-Jacobi skeletons
    Siddiqi, K
    Bouix, S
    Tannenbaum, A
    Zucker, SW
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2002, 48 (03) : 215 - 231
  • [24] Hamilton-Jacobi diffieties
    Vitagliano, Luca
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (10) : 1932 - 1949
  • [25] Pseudo-supersymmetry and third order intertwining operator
    Roychoudhury, R.
    Roy, B.
    PHYSICS LETTERS A, 2008, 372 (07) : 997 - 1000
  • [26] Spontaneous PT symmetry breaking and pseudo-supersymmetry
    Sinha, A.
    Roy, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (23): : L377 - L384
  • [27] Five-dimensional Hamilton-Jacobi approach to relativistic quantum mechanics
    Rose, H
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 132, 2004, 132 : 247 - 285
  • [28] STOCHASTIC HOMOGENIZATION OF HAMILTON-JACOBI AND "VISCOUS"-HAMILTON-JACOBI EQUATIONS WITH CONVEX NONLINEARITIES - REVISITED
    Lions, Pierre-Louis
    Souganidis, Panagiotis E.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (02) : 627 - 637
  • [29] HAMILTON-JACOBI FORMALISM FOR STRINGS
    NAMBU, Y
    PHYSICS LETTERS B, 1980, 92 (3-4) : 327 - 330
  • [30] On the vectorial Hamilton-Jacobi system
    Yan, BS
    PROCEEDINGS OF THE CONFERENCE ON NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, : 212 - 221