SCr modules over local rings

被引:0
作者
Koh, JH [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Korea Inst Adv Study, Sch Math, Seoul, South Korea
关键词
D O I
10.1006/jabr.2000.8694
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the following two conditions, for each integer r greater than or equal to 1, are equivalent for a finitely generated module M over a complete Noetherian local ring (R, m): (a) For each integer q greater than or equal to 1, there is a submodule N-q subset of m(q)M such that M/N-q is embeddable in E-r, where E denotes the injective hull of the residue field R/m. (b) Either M subset of E-r, or else dim(R/m)Hom(R)(R/m, M)=k <r and there is no prime ideal P such that dimR/p = 1 and (R/p)(r-k+1) is embeddable in M. This is an extension of a result of M. Hochster (1977, Trans. Amer. Math. Sec. 231, 463-488), which is the case r = 1. We show other results related to these conditions. (C) 2001 Academic Press.
引用
收藏
页码:589 / 605
页数:17
相关论文
共 12 条
[1]  
FERRAND D, 1970, ANN SCI ECOLE NORM S, V3, P295
[2]  
FOSSUM R, 1975, PUBL MATH IHES, V0045, P00193
[3]   MU-L IN A MINIMAL INJECTIVE RESOLUTION-II [J].
FOXBY, HB .
MATHEMATICA SCANDINAVICA, 1977, 41 (01) :19-44
[4]   Gaussian polynomials and content ideals [J].
Heinzer, W ;
Huneke, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (03) :739-745
[5]   CYCLIC PURITY VERSUS PURITY IN EXCELLENT NOETHERIAN RINGS [J].
HOCHSTER, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 231 (02) :463-488
[6]   Some restrictions on the maps in minimal resolutions [J].
Koh, J ;
Lee, K .
JOURNAL OF ALGEBRA, 1998, 202 (02) :671-689
[7]  
MATSUMURA H, 1986, COMMUTATIVE RING THE
[8]  
Matsumura H., 1970, COMMUTATIVE ALGEBRA
[9]   Small cofinite irreducibles [J].
Melkersson, L .
JOURNAL OF ALGEBRA, 1997, 196 (02) :630-645
[10]  
ROBERTS P, 1976, ANN SCI ECOLE NORM S, V9, P103