Mathematical simulation for non-equilibrium droplet evaporation

被引:0
|
作者
Smirnov, N. N. [1 ]
Kulchitskiy, A. V. [1 ]
Dushin, V. R. [1 ]
Osadchaya, E. S. [1 ]
Nerchenko, V. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Leninskie Gory 1, Moscow 119992, Russia
来源
PROCEEDINGS OF THE 6TH WSEAS INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND SIMULATION IN ENGINEERING (ICOSSSE '07): SYSTEM SCIENCE AND SIMULATION IN ENGINEERING | 2007年
基金
俄罗斯基础研究基金会;
关键词
phase transition; heat flux; evaporation; non-equilibrium; diffusion; mathematical simulation;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Investigations of acute problems of heat and mass exchange accompanied by phase transitions need adequate modeling of evaporation, which is extremely important for the curved surfaces in the: presence of strong heat fluxes. Working cycle of heat pipes is governed by the active fluid evaporation rate. Combustion of most widely spread hydrocarbon fuels takes place in a gas-phase regime. Thus, evaporation of fuel from the surface of droplets turns to be one of the limiting factors of the process as well. In the present paper processes of non-equilibrium evaporation of small droplets were investigated theoretically. The: rate of droplet evaporation is characterized by a dimensionless Peclet number (Pe). A new dimensionless parameter I characterizing the deviation of phase transition from the equilibrium was introduced, that made it possible to investigate its influence on variations of the Peclet number and to determine the range of applicability for the quasi-equilibrium model. As it follows from the present investigations accounting for non-equilibrium effects in evaporation for many types of widely used liquids is crucial, for droplets diameters less than 100 microns, while the surface tension effects essentially manifest only for droplets below 0.1 micron.
引用
收藏
页码:24 / +
页数:2
相关论文
共 50 条
  • [1] Mathematical simulation for non-equilibrium droplet evaporation
    Dushin, V. R.
    Kulchitskiy, A. V.
    Nerchenko, V. A.
    Nikitin, V. F.
    Osadchaya, E. S.
    Phylippov, Yu. G.
    Smirnov, N. N.
    ACTA ASTRONAUTICA, 2008, 63 (11-12) : 1360 - 1371
  • [2] Mathematical simulation for non-equilibrium droplet evaporation
    Smirnov, N. N.
    Kulchitskiy, A., V
    Dushin, V. R.
    Osadchaya, E. S.
    Nerchenko, V. A.
    PROCEEDINGS OF THE 5TH WSEAS INTERNATIONAL CONFERENCE ON HEAT AND MASS TRANSFER (HMT '08), 2008, : 162 - 167
  • [3] Combustion of a liquid fuel droplet in the process of non-equilibrium surface evaporation
    Tyurenkova V.V.
    Smirnov N.N.
    Tyurenkova, V.V. (tyurenkova.v.v@yandex.ru), 1600, Allerton Press Incorporation (69): : 83 - 88
  • [4] QUASI-STEADY THEORY OF NON-EQUILIBRIUM DROPLET EVAPORATION AND CONDENSATION
    LOU, YS
    YANG, LS
    JOURNAL OF APPLIED PHYSICS, 1979, 50 (08) : 5331 - 5338
  • [5] ON THE MATHEMATICAL SIMULATION OF NON-EQUILIBRIUM CLOUD CONDENSATION RATES
    WACKER, U
    HERBERT, F
    METEOROLOGISCHE RUNDSCHAU, 1983, 36 (03): : 141 - 144
  • [6] A self-accelerated evaporation mode of a conducting droplet in non-equilibrium plasma
    Kozyrev, A. V.
    Sitnikov, A. G.
    RUSSIAN PHYSICS JOURNAL, 2010, 53 (02) : 128 - 133
  • [7] A self-accelerated evaporation mode of a conducting droplet in non-equilibrium plasma
    A. V. Kozyrev
    A. G. Sitnikov
    Russian Physics Journal, 2010, 53 : 128 - 133
  • [8] Evaporation of Leidenfrost droplet on thin soluble liquid bath with thermal non-equilibrium effect
    Wang, Hao
    Xu, Jinliang
    Ma, Xiaojing
    Xie, Jian
    PHYSICS OF FLUIDS, 2022, 34 (09)
  • [9] Non-equilibrium evaporation and condensation at microgravity
    Clarkson Univ, Potsdam, United States
    Microgravity Sci Technol, 3 (163-169):
  • [10] Non-Equilibrium Evaporation/Condensation Model
    Librovich, B. V.
    Nowakowski, A. F.
    Nicolleau, F. C. G. A.
    Michelitsch, T. M.
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2017, 9 (08)