Thermal runaway front in failure propagation of long-shape lithium-ion battery

被引:65
作者
Zhang, Fangshu [1 ,2 ]
Feng, Xuning [2 ]
Xu, Chengshan [2 ]
Jiang, Fachao [1 ]
Ouyang, Minggao [2 ]
机构
[1] China Agr Univ, Coll Engn, Beijing 100083, Peoples R China
[2] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy storage; Lithium-ion battery; Thermal model; Thermal runaway; Thermal runaway propagation; Thermal runaway front; NAIL-PENETRATION; SHORT-CIRCUIT; MECHANISM;
D O I
10.1016/j.ijheatmasstransfer.2021.121928
中图分类号
O414.1 [热力学];
学科分类号
摘要
Long, large-format lithium-ion batteries have become prominent in recent years in high-power applica-tion scenarios, such as in electrochemical energy storage stations, electric vehicles, and electric ships. In these batteries, failure is always initiated from a local point and then propagates to the full cell, re-quiring countermeasures to quench the in-cell thermal runaway propagation. This study investigates the thermal runaway propagation behaviors of long, large-format lithium-ion batteries. A thermal runaway front exists during the propagation of thermal runaway; it separates the failure zone and normal zone and carries significant information regarding the thermal runaway reactions. The characteristics of the thermal runaway front are investigated through experiments and simulations. The thermal runaway front moves forward with an average velocity of approximately 24.14 mm.s(-1), driven by the large temperature gradient between the failure and intact zones. The velocity of the thermal runaway front is correlated with the thermophysical properties of the battery. A modeling analysis indicates that the velocity of the thermal runaway front in propagation has a square root correlation with the thermal conductivity and heat generation rate. This square root correlation links the failure process and the thermophysical prop-erties of the battery and can contribute to the future safety design of large-format batteries. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Assessment of Thermal Runaway propagation in lithium-ion battery modules with different separator materials
    da Silva, Gabriel Menezes
    Lima, Thiago Jose
    da Silva, Dayvis Dias
    Henriques, Izabela Batista
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 197
  • [32] Experimental investigation on suppression of thermal runaway propagation of lithium-ion battery by intermittent spray
    Zhang, Lin
    Duan, Qiangling
    Xu, Jiajia
    Meng, Xiangdong
    Sun, Jinhua
    Wang, Qingsong
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [33] Experimental Study on the Efficiency of Hydrogel on Suppressing Thermal Runaway Propagation of Lithium-Ion Battery
    Liu, Chunyuan
    Zhang, Guowei
    Yuan, Diping
    Jiang, Liming
    Fan, Yafei
    Kong, Depeng
    FIRE TECHNOLOGY, 2024,
  • [34] Experimental study on suppression of thermal runaway propagation of lithium-ion battery by salt hydrate based dry powder extinguishants
    Li, Xiutao
    Zhu, Yuxian
    Du, Kang
    Zhou, Xiaomeng
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 60
  • [35] Characterization of commercial thermal barrier materials to prevent thermal runaway propagation in large format lithium-ion cells
    Nambisan, Praveen
    Manjunatha, H.
    Ravadi, Pavan
    Reddy, Hari Prasad
    Bharath, G. M.
    Kulkarni, Mukund Arvind
    Sundaram, Saravanan
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [36] Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes
    Lai, Xin
    Wang, Shuyu
    Wang, Huaibin
    Zheng, Yuejiu
    Feng, Xuning
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 171
  • [37] CFD study of nail penetration induced thermal runaway propagation in Lithium-Ion battery cell pack
    Uwitonze, Hosanna
    Ni, Aleksey
    Nagulapati, Vijay Mohan
    Kim, Heehyang
    Lim, Hankwon
    APPLIED THERMAL ENGINEERING, 2024, 243
  • [38] Synergistic effect of insulation and liquid cooling on mitigating the thermal runaway propagation in lithium-ion battery module
    Rui, Xinyu
    Feng, Xuning
    Wang, Hewu
    Yang, Huiqian
    Zhang, Youqun
    Wan, Mingchun
    Wei, Yaping
    Ouyang, Minggao
    APPLIED THERMAL ENGINEERING, 2021, 199
  • [39] Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module
    Yuan, Chengchao
    Wang, Qingsong
    Wang, Yu
    Zhao, Yang
    APPLIED THERMAL ENGINEERING, 2019, 153 : 39 - 50
  • [40] Numerical investigation on thermal runaway propagation and prevention in cell-to-chassis lithium-ion battery system
    Wang, Gongquan
    Gao, Wei
    He, Xu
    Peng, Rongqi
    Zhang, Yue
    Dai, Xinyi
    Ping, Ping
    Kong, Depeng
    APPLIED THERMAL ENGINEERING, 2024, 236