3D porous graphene with ultrahigh surface area for microscale capacitive deionization

被引:153
作者
Li, Zhuo [1 ]
Song, Bo [1 ,2 ]
Wu, Zhenkun [1 ]
Lin, Ziyin [1 ,2 ]
Yao, Yagang [1 ]
Moon, Kyoung-Sik [1 ]
Wong, C. P. [1 ,3 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[3] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
关键词
Capacitive deionization; Graphene; Thermal management of microelectronics; Water cooling system; Energy efficient desalination; AQUEOUS-SOLUTIONS; CARBON NANOTUBES; NACL SOLUTIONS; ELECTROSORPTION; DESALINATION; ACTIVATION; ELECTRODES; REMOVAL; OXIDE; HEAT;
D O I
10.1016/j.nanoen.2014.11.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Capacitive deionization (CDI) is an emerging technology to supply deionized water as liquid coolant for the thermal management in microelectronics. Graphene has been demonstrated as a promising candidate for CDI electrode. However, the performance of current graphene-based CD! is far below expectation due to the limited specific surface area (SSA) and electrical conductivity of the chemically reduced graphene. Here we presented a KOH-activated graphene that has ultrahigh SSA of 3513 m(2)/g and electrical conductivity of 104 S/m. With improved materials properties, an ultrahigh electrosorption capacity of 11.86 mg/g and a significant adsorption rate of 20 min are achieved. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:711 / 718
页数:8
相关论文
共 43 条
[1]   Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? [J].
Anderson, Marc A. ;
Cudero, Ana L. ;
Palma, Jesus .
ELECTROCHIMICA ACTA, 2010, 55 (12) :3845-3856
[2]   Membrane desalination driven by solar energy [J].
Banat, Fawzi ;
Qiblawey, Hazim .
SOLAR DESALINATION FOR THE 21ST CENTURY: A REVIEW OF MODERN TECHNOLOGIES AND RESEARCHES ON DESALINATION COUPLED TO RENEWABLE ENERGIES, 2007, :271-+
[3]  
Bar-Cohen A., 1992, Transactions of the ASME. Journal of Electronic Packaging, V114, P257, DOI 10.1115/1.2905450
[4]   Direct liquid cooling of high flux micro and nano electronic components [J].
Bar-Cohen, Avram ;
Arik, Mehmet ;
Ohadi, Michael .
PROCEEDINGS OF THE IEEE, 2006, 94 (08) :1549-1570
[5]   Amorphous Carbon Nanofibers and Their Activated Carbon Nanofibers as Supercapacitor Electrodes [J].
Barranco, V. ;
Lillo-Rodenas, M. A. ;
Linares-Solano, A. ;
Oya, A. ;
Pico, F. ;
Ibanez, J. ;
Agullo-Rueda, F. ;
Amarilla, J. M. ;
Rojo, J. M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (22) :10302-10307
[6]   Thermodynamic cycle analysis for capacitive deionization [J].
Biesheuvel, P. M. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 332 (01) :258-264
[7]   Capacitive Deionization of NaCl Solutions at Non-Steady-State Conditions: Inversion Functionality of the Carbon Electrodes [J].
Bouhadana, Yaniv ;
Avraham, Eran ;
Noked, Malachi ;
Ben-Tzion, Moshe ;
Soffer, Abraham ;
Aurbach, Doron .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (33) :16567-16573
[8]   Interlayer cooling potential in vertically integrated packages [J].
Brunschwiler, T. ;
Michel, B. ;
Rothuizen, H. ;
Kloter, U. ;
Wunderle, B. ;
Oppermann, H. ;
Reichl, H. .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2009, 15 (01) :57-74
[9]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[10]  
Christen K., 2006, ENV SCI TECHNOL, V40