Arithmetic progressions in self-similar sets

被引:0
作者
Xi, Lifeng [1 ]
Jiang, Kan [1 ]
Pei, Qiyang [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-similar sets; arithmetic progression (AP); beta-expansions; REAL NUMBERS; DIMENSION; EXPANSIONS;
D O I
10.1007/s11464-019-0788-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a sequence {b(i)}(i=1)(n) and a ratio lambda is an element of (0, 1), let E = boolean OR(n)(i=1) (lambda E+b(i)) be a homogeneous self-similar set. In this paper, we study the existence and maximal length of arithmetic progressions in E: Our main idea is from the multiple beta-expansions.
引用
收藏
页码:957 / 966
页数:10
相关论文
共 50 条
  • [1] Arithmetic progressions in self-similar sets
    Lifeng Xi
    Kan Jiang
    Qiyang Pei
    Frontiers of Mathematics in China, 2019, 14 : 957 - 966
  • [2] Hausdorff dimension of the arithmetic sum of self-similar sets
    Jiang, Kan
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (03): : 684 - 701
  • [3] ARITHMETIC PRODUCT OF SELF-SIMILAR SETS WITH TWO BRANCHES
    Wang, Qin
    Zhang, Kai
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
  • [4] On univoque points for self-similar sets
    Baker, Simon
    Dajani, Karma
    Jiang, Kan
    FUNDAMENTA MATHEMATICAE, 2015, 228 (03) : 265 - 282
  • [5] ARITHMETIC REPRESENTATIONS OF REAL NUMBERS IN TERMS OF SELF-SIMILAR SETS
    Jiang, Kan
    Xi, Lifeng
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 1111 - 1129
  • [6] Estimating the Hausdorff dimensions of univoque sets for self-similar sets
    Chen, Xiu
    Jiang, Kan
    Li, Wenxia
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (05): : 862 - 873
  • [7] Trigonometric series and self-similar sets
    Li, Jialun
    Sahlsten, Tuomas
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (01) : 341 - 368
  • [8] From Self-Similar Groups to Self-Similar Sets and Spectra
    Grigorchuk, Rostislav
    Nekrashevych, Volodymyr
    Sunic, Zoran
    FRACTAL GEOMETRY AND STOCHASTICS V, 2015, 70 : 175 - 207
  • [9] Self-similar Sets as Hyperbolic Boundaries
    Lau, Ka-Sing
    Wang, Xiang-Yang
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) : 1777 - 1795
  • [10] On the distance sets of self-similar sets
    Orponen, Tuomas
    NONLINEARITY, 2012, 25 (06) : 1919 - 1929