Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules

被引:41
作者
Gentile, Francesco [1 ]
Fernandez, Michael [1 ]
Ban, Fuqiang [1 ]
Ton, Anh-Tien [1 ]
Mslati, Hazem [1 ]
Perez, Carl F. [1 ]
Leblanc, Eric [1 ]
Yaacoub, Jean Charle [1 ]
Gleave, James [1 ]
Stern, Abraham [2 ]
Wong, Bill [3 ]
Jean, Francois [4 ]
Strynadka, Natalie [5 ]
Cherkasov, Artem [1 ]
机构
[1] Univ British Columbia, Vancouver Prostate Ctr, Dept Urol Sci, 2660 Oak St, Vancouver, BC V6H 3Z6, Canada
[2] NVIDIA Corp, Santa Clara, CA USA
[3] Dell Canada, N York, ON, Canada
[4] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC, Canada
[5] Univ British Columbia, Dept Biochem & Mol Biol, Vancouver, BC, Canada
基金
加拿大健康研究院;
关键词
DRUG DISCOVERY; ALGORITHM; ACCURATE; LIGANDS; ICM;
D O I
10.1039/d1sc05579h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent explosive growth of 'make-on-demand' chemical libraries brought unprecedented opportunities but also significant challenges to the field of computer-aided drug discovery. To address this expansion of the accessible chemical universe, molecular docking needs to accurately rank billions of chemical structures, calling for the development of automated hit-selecting protocols to minimize human intervention and error. Herein, we report the development of an artificial intelligence-driven virtual screening pipeline that utilizes Deep Docking with Autodock GPU, Glide SP, FRED, ICM and QuickVina2 programs to screen 40 billion molecules against SARS-CoV-2 main protease (Mpro). This campaign returned a significant number of experimentally confirmed inhibitors of Mpro enzyme, and also enabled to benchmark the performance of twenty-eight hit-selecting strategies of various degrees of stringency and automation. These findings provide new starting scaffolds for hit-to-lead optimization campaigns against Mpro and encourage the development of fully automated end-to-end drug discovery protocols integrating machine learning and human expertise.
引用
收藏
页码:15960 / 15974
页数:15
相关论文
共 62 条
[1]   ICM - A NEW METHOD FOR PROTEIN MODELING AND DESIGN - APPLICATIONS TO DOCKING AND STRUCTURE PREDICTION FROM THE DISTORTED NATIVE CONFORMATION [J].
ABAGYAN, R ;
TOTROV, M ;
KUZNETSOV, D .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1994, 15 (05) :488-506
[2]   Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 [J].
Acharya, A. ;
Agarwal, R. ;
Baker, M. B. ;
Baudry, J. ;
Bhowmik, D. ;
Boehm, S. ;
Byler, K. G. ;
Chen, S. Y. ;
Coates, L. ;
Cooper, C. J. ;
Demerdash, O. ;
Daidone, I ;
Eblen, J. D. ;
Ellingson, S. ;
Forli, S. ;
Glaser, J. ;
Gumbart, J. C. ;
Gunnels, J. ;
Hernandez, O. ;
Irle, S. ;
Kneller, D. W. ;
Kovalevsky, A. ;
Larkin, J. ;
Lawrence, T. J. ;
LeGrand, S. ;
Liu, S-H ;
Mitchell, J. C. ;
Park, G. ;
Parks, J. M. ;
Pavlova, A. ;
Petridis, L. ;
Poole, D. ;
Pouchard, L. ;
Ramanathan, A. ;
Rogers, D. M. ;
Santos-Martins, D. ;
Scheinberg, A. ;
Sedova, A. ;
Shen, Y. ;
Smith, J. C. ;
Smith, M. D. ;
Soto, C. ;
Tsaris, A. ;
Thavappiragasam, M. ;
Tillack, A. F. ;
Vermaas, J. V. ;
Vuong, V. Q. ;
Yin, J. ;
Yoo, S. ;
Zahran, M. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) :5832-5852
[3]   Machine learning classification can reduce false positives in structure-based virtual screening [J].
Adeshina, Yusuf O. ;
Deeds, Eric J. ;
Karanicolas, John .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (31) :18477-18488
[4]   Fast, accurate, and reliable molecular docking with QuickVina 2 [J].
Alhossary, Amr ;
Handoko, Stephanus Daniel ;
Mu, Yuguang ;
Kwoh, Chee-Keong .
BIOINFORMATICS, 2015, 31 (13) :2214-2216
[5]   Low Data Drug Discovery with One-Shot Learning [J].
Altae-Tran, Han ;
Ramsundar, Bharath ;
Pappu, Aneesh S. ;
Pande, Vijay .
ACS CENTRAL SCIENCE, 2017, 3 (04) :283-293
[6]   Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds [J].
Anh-Tien Ton ;
Gentile, Francesco ;
Hsing, Michael ;
Ban, Fuqiang ;
Cherkasov, Artem .
MOLECULAR INFORMATICS, 2020, 39 (08)
[7]   Best Practices of Computer-Aided Drug Discovery: Lessons Learned from the Development of a Preclinical Candidate for Prostate Cancer with a New Mechanism of Action [J].
Ban, Fuqiang ;
Dalal, Kush ;
Li, Huifang ;
LeBlanc, Eric ;
Rennie, Paul S. ;
Cherkasov, Artem .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (05) :1018-1028
[8]   Discussion of measures of enrichment in virtual screening: Comparing the information content of descriptors with increasing levels of sophistication [J].
Bender, A ;
Glen, RC .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2005, 45 (05) :1369-1375
[9]   Lean-Docking: Exploiting Ligands' Predicted Docking Scores to Accelerate Molecular Docking [J].
Berenger, Francois ;
Kumar, Ashutosh ;
Zhang, Kam Y. J. ;
Yamanishi, Yoshihiro .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (05) :2341-2352
[10]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242