Axial Ring-Cusp Hybrid (ARCH) plasma discharge: an approach to highly efficient miniature-scale ion sources

被引:7
作者
Dankongkakul, Ben [1 ]
Wirz, Richard E. [2 ]
机构
[1] ERC Inc, Air Force Res Lab, Edwards AFB, CA 93524 USA
[2] Univ Calif Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90064 USA
关键词
ion thrusters; cusp confinement; simulated discharge; ion sources; ring-cusp; CROSS-SECTIONS; CUBESATS;
D O I
10.1088/1361-6595/aae63c
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The miniaturization of conventional direct-current ion sources is predominantly restricted by efficiency limitations associated with the increased surface area-to-volume ratio of smaller-scale discharge chambers-reducing the effective confinement length of the high-energy 'primary' electrons that is necessary for efficient plasma generation. The Axial Ring-Cusp Hybrid (ARCH) plasma discharge addresses this scaling limitation by using a new approach that combines magnetic and electrostatic confinement to decouple the primary and plasma electrons loss mechanisms. Simulated ion thruster performance measurements show that the ARCH discharge may be capable of achieving a discharge loss and a propellant mass utilization of 175 eV/ion and 0.87, respectively. These estimates are supported by full internal maps of the plasma properties, including the electron energy distribution function, inside the discharge chamber. The measurements show highly effective confinement of the primary electrons, high average plasma electron temperatures of similar to 5 eV, and low plasma sheath potential relative to the anode- attributes generally found only in efficient conventional-scale discharges with good overall plasma confinement. As such, the new ARCH discharge design approach may allow miniature ion thrusters to achieve the performance and efficiency levels similar to those of highly efficient conventional ion thrusters.
引用
收藏
页数:10
相关论文
共 28 条
  • [11] Goebel D M, 2009, IEPC2009152
  • [12] Goebel D.M., 2008, Fundamentals of electric propulsion: ion and Hall thrusters, P24, DOI DOI 10.1109/AERO.2000.878373
  • [13] ION-SOURCE DISCHARGE PERFORMANCE AND STABILITY
    GOEBEL, DM
    [J]. PHYSICS OF FLUIDS, 1982, 25 (06) : 1093 - 1102
  • [15] Space Propulsion Technology for Small Spacecraft
    Krejci, David
    Lozano, Paulo
    [J]. PROCEEDINGS OF THE IEEE, 2018, 106 (03) : 362 - 378
  • [16] Laframboise J, 1966, THESIS
  • [17] Langmuir Irving., 1924, General Electric Review, P616
  • [18] Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers
    Levchenko, Igor
    Bazaka, Kateryna
    Ding, Yongjie
    Raitses, Yevgeny
    Mazouffre, Stephane
    Henning, Torsten
    Klar, Peter J.
    Shinohara, Shunjiro
    Schein, Jochen
    Garrigues, Laurent
    Kim, Minkwan
    Lev, Dan
    Taccogna, Francesco
    Boswell, Rod W.
    Charles, Christine
    Koizumi, Hiroyuki
    Shen, Yan
    Scharlemann, Carsten
    Keidar, Michael
    Xu, Shuyan
    [J]. APPLIED PHYSICS REVIEWS, 2018, 5 (01):
  • [19] Moore R D, 1969, 7 INT EL PROP C AM I
  • [20] TOTAL CROSS SECTIONS FOR IONIZATION AND ATTACHMENT IN GASES BY ELECTRON IMPACT .I. POSITIVE IONIZATION
    RAPP, D
    ENGLANDE.P
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (05) : 1464 - &