Weyl numbers versus Z-Weyl numbers

被引:0
作者
Carl, Bernd [1 ]
Defant, Andreas
Planer, Doris [2 ,3 ]
机构
[1] FSU Jena, Math Inst, D-07743 Jena, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Math, D-26111 Oldenburg, Germany
[3] Ernst Abbe Fachhsch Jena, Fachbereich Grundlagenwissensch, D-07743 Jena, Germany
关键词
s-numbers; Weyl numbers; geometry of Banach spaces; BANACH-SPACES; S-NUMBERS; OPERATORS; INEQUALITIES; EIGENVALUES;
D O I
10.4064/sm223-3-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an infinite-dimensional Banach space Z (substituting the Hilbert space l(2)), the s-number sequence of Z-Weyl numbers is generated by the approximation numbers according to the pattern of the classical Weyl numbers. We compare Weyl numbers with Z-Weyl numbers-a problem originally posed by A. Pietsch. We recover a result of Hinrichs and the first author showing that the Weyl numbers are in a sense minimal. This emphasizes the outstanding role of Weyl numbers within the theory of eigenvalue distribution of operators between Banach spaces.
引用
收藏
页码:233 / 250
页数:18
相关论文
共 25 条