Magnetic graphite suspensions with reversible thermal conductivity

被引:12
作者
Sun, P. C. [1 ,2 ]
Huang, Y. [1 ]
Zheng, R. T. [2 ]
Cheng, G. A. [2 ]
Wan, Q. M. [1 ]
Ding, Y. L. [3 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[2] Beijing Normal Univ, Key Lab Radiat Beam Technol & Mat Modificat, Minist Educ, Beijing 100875, Peoples R China
[3] Univ Birmingham, Sch Chem Engn, Birmingham B15 2TT, W Midlands, England
基金
中国博士后科学基金;
关键词
Magnetic graphite nanoflakes; Suspensions; Thermal conductivity; Reversible; Magnetic field; TRANSPORT; GRAPHENE;
D O I
10.1016/j.matlet.2015.02.104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic graphite nanofiake (GN) suspensions with reversible thermal conductivity (TC) are reported. A process of sulfuric acid intercalation, microwave expansion magnetization, and ultrasonic dispersion is followed to make magnetic GN Poly-Alpha-Olefin (PAO) suspensions. Magnetic field was observed to increase the TC of the suspensions dramatically, up to 325% with 0.8% (w/w) of magnetic GNs. After removing the magnetic field, the TC trends to decrease reversibly. The maximal TC contrast ratio reaches 3 times before and after the effects of magnetic field. Such riiaterials with magnetically reversible TC have great potential in next generation "smart" cooling devices. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:92 / 94
页数:3
相关论文
共 50 条
  • [41] Improvement of thermal conductivity of paraffin by adding expanded graphite
    Karkri, Mustapha
    Lachheb, Mohamed
    Gossard, Didier
    Ben Nasrallah, Sassi
    AlMaadeed, Mariam A.
    JOURNAL OF COMPOSITE MATERIALS, 2016, 50 (19) : 2589 - 2601
  • [42] A Thermal Conductivity Model for Lamellar and Compacted Graphite Irons
    Belov, Ilja
    Fourlakidis, Vasileios
    Domeij, Bjorn
    Matsushita, Taishi
    Dioszegi, Attila
    INTERNATIONAL JOURNAL OF METALCASTING, 2025, 19 (02) : 1129 - 1139
  • [43] The Determination of Thermal Conductivity and Emissivity of Graphite at High Temperatures
    A. V. Kostanovskii
    M. G. Zeodinov
    M. E. Kostanovskaya
    High Temperature, 2005, 43 : 793 - 795
  • [44] Thermal conductivity and catalytic mechanism of recrystallized graphite by titanium
    Qiu, HP
    Song, YZ
    Guo, QG
    Zhai, GT
    Liu, L
    JOURNAL OF INORGANIC MATERIALS, 2003, 18 (01) : 129 - 135
  • [45] High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites
    Gu, Junwei
    Li, Nan
    Tian, Lidong
    Lv, Zhaoyuan
    Zhang, Qiuyu
    RSC ADVANCES, 2015, 5 (46) : 36334 - 36339
  • [46] Thermal conductivity of graphite-filled LDPE composites
    Ji-Zhao Liang
    Yu-Lin Qiu
    Polymer Bulletin, 2015, 72 : 1723 - 1734
  • [47] Effective thermal and electrical conductivity of graphite nanoplatelet composites
    Zhang, X. (rachpe@seu.edu.cn), 1600, Southeast University (29): : 158 - 161
  • [48] Thermal conductivity of graphite-filled LDPE composites
    Liang, Ji-Zhao
    Qiu, Yu-Lin
    POLYMER BULLETIN, 2015, 72 (07) : 1723 - 1734
  • [49] Thermal conductivity and microstructure of Ti-doped graphite
    Qiu, HP
    Song, YZ
    Liu, L
    Zhai, GT
    Shi, JL
    CARBON, 2003, 41 (05) : 973 - 978
  • [50] Preparation and characterization of graphite films with high thermal conductivity
    Yuan, Guanming
    Li, Xuanke
    Dong, Zhijun
    Cui, Zhengwei
    Cong, Ye
    Zhang, Jiang
    Li, Yanjun
    Zhang, Zhongwei
    Wang, Junshan
    Gongneng Cailiao/Journal of Functional Materials, 2015, 46 (17): : 17097 - 17101and17106