Magnetic graphite suspensions with reversible thermal conductivity

被引:13
作者
Sun, P. C. [1 ,2 ]
Huang, Y. [1 ]
Zheng, R. T. [2 ]
Cheng, G. A. [2 ]
Wan, Q. M. [1 ]
Ding, Y. L. [3 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[2] Beijing Normal Univ, Key Lab Radiat Beam Technol & Mat Modificat, Minist Educ, Beijing 100875, Peoples R China
[3] Univ Birmingham, Sch Chem Engn, Birmingham B15 2TT, W Midlands, England
基金
中国博士后科学基金;
关键词
Magnetic graphite nanoflakes; Suspensions; Thermal conductivity; Reversible; Magnetic field; TRANSPORT; GRAPHENE;
D O I
10.1016/j.matlet.2015.02.104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic graphite nanofiake (GN) suspensions with reversible thermal conductivity (TC) are reported. A process of sulfuric acid intercalation, microwave expansion magnetization, and ultrasonic dispersion is followed to make magnetic GN Poly-Alpha-Olefin (PAO) suspensions. Magnetic field was observed to increase the TC of the suspensions dramatically, up to 325% with 0.8% (w/w) of magnetic GNs. After removing the magnetic field, the TC trends to decrease reversibly. The maximal TC contrast ratio reaches 3 times before and after the effects of magnetic field. Such riiaterials with magnetically reversible TC have great potential in next generation "smart" cooling devices. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:92 / 94
页数:3
相关论文
共 50 条
  • [31] Tuning the thermal conductivity of nanoparticle suspensions by electric field
    Zhang, Zi-Tong
    Dong, Ruo-Yu
    Qiao, De-shan
    Cao, Bing-Yang
    NANOTECHNOLOGY, 2020, 31 (46)
  • [32] The Origin of High Thermal Conductivity and Ultra low Thermal Expansion in Copper-Graphite Composites
    Firkowska, Izabela
    Boden, Andre
    Boemer, Benji
    Reich, Stephanie
    NANO LETTERS, 2015, 15 (07) : 4745 - 4751
  • [33] Effects of graphite microstructure evolution on the anisotropic thermal conductivity of expanded graphite/paraffin phase change materials and their thermal energy storage performance
    Wang, X. L.
    Li, B.
    Qu, Z. G.
    Zhang, J. F.
    Jin, Z. G.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 155 (155)
  • [34] Magnetic alignment of electrochemically exfoliated graphite in epoxy as a thermal interface material with high through-plane thermal conductivity
    Ryu, Jeong Heon
    Yang, Seo Mi
    Lee, Jea Uk
    Kim, Jae Ho
    Yang, Seung Jae
    CARBON LETTERS, 2022, 32 (06) : 1433 - 1439
  • [35] On the thermal conductivity of magnetic fluid
    Wagh, DK
    Avashia, A
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1996, 35 (6A): : 3518 - 3521
  • [36] Hydrogen-peroxide intercalated expanded graphite facilitates large enhancement in thermal conductivity of polyetherimide/graphite nanocomposites
    Tarannum, Fatema
    Danayat, Swapneel
    Nayal, Avinash
    Mona, Zarin Tasnim
    Annam, Roshan Sameer
    Walters, Keisha B.
    Garg, Jivtesh
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 1420 - 1435
  • [37] Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface
    Xue, C.
    Bai, H.
    Tao, P. F.
    Wang, J. W.
    Jiang, N.
    Wang, S. L.
    MATERIALS & DESIGN, 2016, 108 : 250 - 258
  • [38] Super-Ballistic Width Dependence of Thermal Conductivity in Graphite Nanoribbons and Microribbons
    Huang, Xin
    Masubuchi, Satoru
    Watanabe, Kenji
    Taniguchi, Takashi
    Machida, Tomoki
    Nomura, Masahiro
    NANOMATERIALS, 2023, 13 (12)
  • [39] Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity
    Bhattacharya, Soumya
    Dhar, Purbarun
    Das, Sarit K.
    Ganguly, Ranjan
    Webster, Thomas J.
    Nayar, Suprabha
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2014, 9 : 1287 - 1298
  • [40] Boosted the thermal conductivity of liquid metal via bridging diamond particles with graphite
    Zeng, Chengzong
    Shen, Xia
    Shen, Kun
    Bao, Linzhao
    Liao, Guangyin
    Shen, Jun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 680 : 643 - 656