Magnetic graphite suspensions with reversible thermal conductivity

被引:13
作者
Sun, P. C. [1 ,2 ]
Huang, Y. [1 ]
Zheng, R. T. [2 ]
Cheng, G. A. [2 ]
Wan, Q. M. [1 ]
Ding, Y. L. [3 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[2] Beijing Normal Univ, Key Lab Radiat Beam Technol & Mat Modificat, Minist Educ, Beijing 100875, Peoples R China
[3] Univ Birmingham, Sch Chem Engn, Birmingham B15 2TT, W Midlands, England
基金
中国博士后科学基金;
关键词
Magnetic graphite nanoflakes; Suspensions; Thermal conductivity; Reversible; Magnetic field; TRANSPORT; GRAPHENE;
D O I
10.1016/j.matlet.2015.02.104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic graphite nanofiake (GN) suspensions with reversible thermal conductivity (TC) are reported. A process of sulfuric acid intercalation, microwave expansion magnetization, and ultrasonic dispersion is followed to make magnetic GN Poly-Alpha-Olefin (PAO) suspensions. Magnetic field was observed to increase the TC of the suspensions dramatically, up to 325% with 0.8% (w/w) of magnetic GNs. After removing the magnetic field, the TC trends to decrease reversibly. The maximal TC contrast ratio reaches 3 times before and after the effects of magnetic field. Such riiaterials with magnetically reversible TC have great potential in next generation "smart" cooling devices. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:92 / 94
页数:3
相关论文
共 50 条
  • [21] Thermal conductivity of suspensions containing nanosized SiC particles
    Xie, H
    Wang, J
    Xi, T
    Liu, Y
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2002, 23 (02) : 571 - 580
  • [22] Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths
    Fugallo, Giorgia
    Cepellotti, Andrea
    Paulatto, Lorenzo
    Lazzeri, Michele
    Marzari, Nicola
    Mauri, Francesco
    NANO LETTERS, 2014, 14 (11) : 6109 - 6114
  • [23] Thermal conductivity of low-particle-concentration suspensions: Correlation function approach
    Braginsky, Leonid
    Shklover, Valery
    PHYSICAL REVIEW B, 2008, 78 (22)
  • [24] Thermal Conductivity of and Magnetic Nanofluids Under the Influence of Magnetic Field
    Karimi, Amir
    Goharkhah, Mohammad
    Ashjaee, Mehdi
    Shafii, Mohammad Behshad
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2015, 36 (10-11) : 2720 - 2739
  • [25] Production of highly-oriented graphite monoliths with high thermal conductivity
    Zhang, Fei
    Ren, Danhui
    Zhang, Yinhang
    Huang, Lingqi
    Sun, Yuxuan
    Wang, Wei
    Zhang, Qi
    Feng, Wei
    Zheng, Qingbin
    CHEMICAL ENGINEERING JOURNAL, 2022, 431
  • [26] Effects of neutron radiation on the thermal conductivity of highly oriented pyrolytic graphite
    Guazzelli, M. A.
    Avanzi, L. H.
    Aguiar, V. A. P.
    Vilas-Boas, A. C.
    Alberton, S. G.
    Masunaga, S. H.
    Chinaglia, E. F.
    Araki, K.
    Nakamura, M.
    Toyama, M. M.
    Ferreira, F. F.
    Escote, M. T.
    Santos, R. B. B.
    Medina, N. H.
    Oliveira, J. R. B.
    Cappuzzello, F.
    Cavallaro, M.
    DIAMOND AND RELATED MATERIALS, 2025, 151
  • [27] Thermal Conductivity of Graphite Thin Films Grown by Low Temperature Chemical Vapor Deposition on Ni (111)
    Zheng, Qiye
    Braun, Paul V.
    Cahill, David G.
    ADVANCED MATERIALS INTERFACES, 2016, 3 (16):
  • [28] Graphite C-axis thermal conductivity
    Sun, Ke
    Stroscio, Michael A.
    Dutta, Mitra
    SUPERLATTICES AND MICROSTRUCTURES, 2009, 45 (02) : 60 - 64
  • [29] Tuning thermal conductivity of bismuth selenide nanoribbons by reversible copper intercalation
    Xiong, Yucheng
    Lai, Nien-Chu
    Lu, Yi-Chun
    Xu, Dongyan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 159
  • [30] Point Defects Enhance Cross-Plane Thermal Conductivity In Graphite
    Shen, Ke
    Ren, Qi
    Zhao, Lu
    Qiu, Yu
    Yao, Xincheng
    Jiang, Puqing
    Huang, Zihan
    Li, Yongheng
    Li, Jiachen
    Yu, Suyuan
    Du, Xuezhen
    Liu, Huili
    Hong, Jiawang
    Xie, Lin
    Sun, Bo
    Wu, Junqiao
    Kang, Feiyu
    ADVANCED MATERIALS, 2025,