Magnetic graphite suspensions with reversible thermal conductivity

被引:13
作者
Sun, P. C. [1 ,2 ]
Huang, Y. [1 ]
Zheng, R. T. [2 ]
Cheng, G. A. [2 ]
Wan, Q. M. [1 ]
Ding, Y. L. [3 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[2] Beijing Normal Univ, Key Lab Radiat Beam Technol & Mat Modificat, Minist Educ, Beijing 100875, Peoples R China
[3] Univ Birmingham, Sch Chem Engn, Birmingham B15 2TT, W Midlands, England
基金
中国博士后科学基金;
关键词
Magnetic graphite nanoflakes; Suspensions; Thermal conductivity; Reversible; Magnetic field; TRANSPORT; GRAPHENE;
D O I
10.1016/j.matlet.2015.02.104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic graphite nanofiake (GN) suspensions with reversible thermal conductivity (TC) are reported. A process of sulfuric acid intercalation, microwave expansion magnetization, and ultrasonic dispersion is followed to make magnetic GN Poly-Alpha-Olefin (PAO) suspensions. Magnetic field was observed to increase the TC of the suspensions dramatically, up to 325% with 0.8% (w/w) of magnetic GNs. After removing the magnetic field, the TC trends to decrease reversibly. The maximal TC contrast ratio reaches 3 times before and after the effects of magnetic field. Such riiaterials with magnetically reversible TC have great potential in next generation "smart" cooling devices. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:92 / 94
页数:3
相关论文
共 50 条
  • [1] A review of the coefficient of thermal expansion and thermal conductivity of graphite
    Zhao, Lu
    Tang, Jiang
    Zhou, Min
    Shen, Ke
    NEW CARBON MATERIALS, 2022, 37 (03) : 544 - 555
  • [2] Thermal Conductivity of Graphite Microlattices
    Farzinazar, Shiva
    Ren, Zongqing
    Lee, Jaeho
    PROCEEDINGS OF THE 17TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2018), 2018, : 252 - 255
  • [3] Heat Transfer in Nanoparticle Suspensions: Modeling the Thermal Conductivity of Nanofluids
    Warrier, Pramod
    Yuan, Yanhui
    Beck, Michael P.
    Teja, Amyn S.
    AICHE JOURNAL, 2010, 56 (12) : 3243 - 3256
  • [4] Epoxy/graphite nanocomposites as dielectric resins with enhanced thermal conductivity
    Metz, Renaud
    Diaz-Chacon, Lurayni
    Atencio, Reinaldo
    Dieudonne-George, Philippe
    ELECTRICAL ENGINEERING, 2022, 104 (06) : 3969 - 3982
  • [5] Experiments and modeling for thermal conductivity of graphite nanoplatelets/carbon composites
    Yue, Qi
    Jin, Shuangling
    Guo, Chenting
    Gao, Qian
    Zhang, Rui
    Jin, Minglin
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2016, 24 (12) : 762 - 768
  • [6] Modeling of Thermal Conductivity of Graphite Nanosheet Composites
    Wei Lin
    Rongwei Zhang
    C.P. Wong
    Journal of Electronic Materials, 2010, 39 : 268 - 272
  • [7] Thickness-Dependent Thermal Conductivity of Encased Graphene and Ultrathin Graphite
    Jang, Wanyoung
    Chen, Zhen
    Bao, Wenzhong
    Lau, Chun Ning
    Dames, Chris
    NANO LETTERS, 2010, 10 (10) : 3909 - 3913
  • [8] Modeling of Thermal Conductivity of Graphite Nanosheet Composites
    Lin, Wei
    Zhang, Rongwei
    Wong, C. P.
    JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (03) : 268 - 272
  • [9] Thermal conductivity of nanoparticle suspensions (nanofluids)
    Murshed, S. M. S.
    Leong, K. C.
    Yang, C.
    2006 IEEE CONFERENCE ON EMERGING TECHNOLOGIES - NANOELECTRONICS, 2006, : 155 - +
  • [10] Thermal conductivity and rheological properties of graphite/oil nanofluids
    Wang, Baogang
    Wang, Xiaobo
    Lou, Wenjing
    Hao, Jingcheng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2012, 414 : 125 - 131