Lower bounds for the complexity of linear functionals in the randomized setting
被引:1
|
作者:
Novak, Erich
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jena, Math Inst, D-07743 Jena, GermanyUniv Jena, Math Inst, D-07743 Jena, Germany
Novak, Erich
[1
]
Wozniakowski, Henryk
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
Univ Warsaw, Inst Appl Math, PL-02097 Warsaw, PolandUniv Jena, Math Inst, D-07743 Jena, Germany
Wozniakowski, Henryk
[2
,3
]
机构:
[1] Univ Jena, Math Inst, D-07743 Jena, Germany
[2] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
Optimal Monte Carlo method;
Integration over reproducing kernel Hilbert spaces;
Decomposable kernels;
Complexity in the randomized setting;
D O I:
10.1016/j.jco.2010.08.002
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
Hinrichs (2009) [3] recently studied multivariate integration defined over reproducing kernel Hilbert spaces in the randomized setting and for the normalized error criterion. In particular, he showed that such problems are strongly polynomially tractable if the reproducing kernels are pointwise nonnegative and integrable. More specifically, let n(ran)(epsilon, INTd) be the minimal number of randomized function samples that is needed to compute an epsilon-approximation for the d-variate case of multivariate integration. Hinrichs proved that that n(ran) (epsilon, INTd) <= [pi/2 (1/epsilon)(2)] for all epsilon epsilon (0, 1) and d epsilon N. In this paper we prove that the exponent 2 of epsilon(-1) is sharp for tensor product Hilbert spaces whose univariate reproducing kernel is decomposable and univariate integration is not trivial for the two parts of the decomposition. More specifically we have n(ran) (epsilon, INTd) >= [1/8 (1/epsilon)(2)] for all epsilon epsilon (0, 1) and d >= 2 In epsilon(-1) - In 2/ In alpha(-1) where alpha epsilon [1/2, 1) depends on the particular space.
机构:
Univ Paris Est Marne la Vallee, UMR 8050, Lab Anal & Math Appl, F-77454 Marne La Vallee 2, FranceUniv Paris Est Marne la Vallee, UMR 8050, Lab Anal & Math Appl, F-77454 Marne La Vallee 2, France
Bally, Vlad
Caramellino, Lucia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, ItalyUniv Paris Est Marne la Vallee, UMR 8050, Lab Anal & Math Appl, F-77454 Marne La Vallee 2, France