Two-letter group codes that preserve aperiodicity of inverse finite automata

被引:6
作者
Birget, Jean-Camille [1 ]
Margolis, Stuart W. [1 ]
机构
[1] Rutgers State Univ, Dept Comp Sci, Camden, NJ 08102 USA
基金
美国国家科学基金会; 以色列科学基金会;
关键词
free groups; inverse semigroups; inverse automata;
D O I
10.1007/s00233-007-9024-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct group codes over two letters (i.e., bases of subgroups of a two-generated free group) with special properties. Such group codes can be used for reducing algorithmic problems over large alphabets to algorithmic problems over a two-letter alphabet. Our group codes preserve aperiodicity of inverse finite automata. As an application we show that the following problems are PSpace-complete for two-letter alphabets (this was previously known for large enough finite alphabets): The intersection-emptiness problem for inverse finite automata, the aperiodicity problem for inverse finite automata, and the closure-under-radical problem for finitely generated subgroups of a free group. The membership problem for 3-generated inverse monoids is PSpace-complete.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 14 条
  • [1] Babai L., 1987, P 19 ACM STOC, P409
  • [2] THE MEMBERSHIP PROBLEM IN APERIODIC TRANSFORMATION MONOIDS
    BEAUDRY, M
    MCKENZIE, P
    THERIEN, D
    [J]. JOURNAL OF THE ACM, 1992, 39 (03) : 599 - 616
  • [3] BENOIS M, 1969, CR ACAD SCI A MATH, V269, P1188
  • [4] Berstel J., 1979, TEUBNER STUDIENBUCHE, V38
  • [5] Berstel J., 1985, Pure Appl. Math., V117
  • [6] PSPACE-complete problems for subgroups of free groups and inverse finite automata
    Birget, JC
    Margolis, S
    Meakin, J
    Weil, P
    [J]. THEORETICAL COMPUTER SCIENCE, 2000, 242 (1-2) : 247 - 281
  • [7] FINITE-AUTOMATON APERIODICITY IS PSPACE-COMPLETE
    CHO, S
    HUYNH, DT
    [J]. THEORETICAL COMPUTER SCIENCE, 1991, 88 (01) : 99 - 116
  • [8] Cohen D., 1989, LONDON MATH SOC STUD, V14
  • [9] Hopcroft J. E., 2007, Introduction to Automata Theory, Languages and Computation
  • [10] KOZEN D., 1977, P 18 ANN S FDN COMP, P254