Short-term elevated temperature and CO2 promote photosynthetic induction in the C3 plant Glycine max, but not in the C4 plant Amaranthus tricolor

被引:4
|
作者
Zheng, Tianyu [1 ,2 ]
Yu, Yuan [1 ,2 ]
Kang, Huixing [1 ,2 ]
机构
[1] Peking Univ, Coll Urban & Environm Sci, Dept Ecol, Beijing 100871, Peoples R China
[2] Peking Univ, Key Lab Earth Surface Proc, Minist Educ, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
C-4; photosynthesis; climate change; dynamic photosynthesis; fluctuating light; lightfleck; Rubisco activase; soybean; stomatal conductance; STOMATAL CONDUCTANCE; FLAVERIA-TRINERVIA; UNIFORM IRRADIANCE; LEAF TEMPERATURE; ATMOSPHERIC CO2; GLOBAL CHANGE; CARBON GAIN; LOW-LIGHT; RESPONSES; GROWTH;
D O I
10.1071/FP21363
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The continuous increases of atmospheric temperature and CO2 concentration will impact global photosynthesis. However, there are few studies considering the interaction of elevated temperature (eT) and elevated CO2 (eCO(2)) on dynamic photosynthesis, particularly for C-4 species. We examine dynamic photosynthesis under four different temperature and [CO2] treatments: (1) 400 ppm Chi 28 degrees C (CT); (2) 400 ppm Chi 33 degrees C (CT+); (3) 800 ppm Chi 28 degrees C (C+T); and (4) 800 ppm Chi 33 degrees C (C+T+). In Glycine max L., the time required to reach 50% (T-50%A) and 90% (T-90%A) of full photosynthetic induction was smaller under the CT+, C+T, and C+T+ treatments than those under the CT treatment. In Amaranthus tricolor L., however, neither T-50%A nor T-90%A was not significantly affected by eT or eCO(2). In comparison with the CT treatment, the achieved carbon gain was increased by 58.3% (CT+), 112% (C+T), and 136.6% (C+T+) in G. max and was increased by 17.1% (CT+), 2.6% (C+T) and 56.9% (C+T+) in A. tricolor. The increases of achieved carbon gain in G. max were attributable to both improved photosynthetic induction efficiency (IE) and enhanced steady-state photosynthesis, whereas those in A. tricolor were attributable to enhanced steady-state photosynthesis.
引用
收藏
页码:995 / 1007
页数:13
相关论文
共 50 条
  • [21] LONG-TERM PHOTOSYNTHETIC RESPONSE IN SINGLE LEAVES OF A C3 AND C4 SALT-MARSH SPECIES GROWN AT ELEVATED ATMOSPHERIC CO2 INSITU
    ZISKA, LH
    DRAKE, BG
    CHAMBERLAIN, S
    OECOLOGIA, 1990, 83 (04) : 469 - 472
  • [22] Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2
    Pinto, Harshini
    Sharwood, Robert E.
    Tissue, David T.
    Ghannoum, Oula
    JOURNAL OF EXPERIMENTAL BOTANY, 2014, 65 (13) : 3669 - 3681
  • [23] Activation of CO2 assimilation during photosynthetic induction is slower in C4 than in C3 photosynthesis in three phylogenetically controlled experiments
    Cubas, Lucia Arce
    Vath, Richard L.
    Bernardo, Emmanuel L.
    Sales, Cristina Rodrigues Gabriel
    Burnett, Angela C.
    Kromdijk, Johannes
    FRONTIERS IN PLANT SCIENCE, 2023, 13
  • [24] Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2
    Grodzinski, B
    Jiao, JR
    Leonardos, ED
    PLANT PHYSIOLOGY, 1998, 117 (01) : 207 - 215
  • [25] Elevated Atmospheric CO2 Triggers Compensatory Feeding by Root Herbivores on a C3 but Not a C4 Grass
    Johnson, Scott N.
    Lopaticki, Goran
    Hartley, Susan E.
    PLOS ONE, 2014, 9 (03):
  • [26] Interactive Effects of Elevated CO2 and Growth Temperature on the Tolerance of Photosynthesis to Acute Heat Stress in C3 and C4 Species
    E.William Hamilton Ⅲ
    Scott A.Heckathorn
    Puneet Joshi
    Deepak Barua
    Journal of Integrative Plant Biology, 2008, (11) : 1375 - 1387
  • [27] Interactive Effects of Elevated CO2 and Growth Temperature on the Tolerance of Photosynthesis to Acute Heat Stress in C3 and C4 Species
    Hamilton, E. William, III
    Heckathorn, Scott A.
    Joshi, Puneet
    Wang, Dan
    Barua, Deepak
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2008, 50 (11) : 1375 - 1387
  • [28] EFFECTS OF CO2 AND TEMPERATURE ON GROWTH AND RESOURCE USE OF COOCCURRING C3 AND C4 ANNUALS
    COLEMAN, JS
    BAZZAZ, FA
    ECOLOGY, 1992, 73 (04) : 1244 - 1259
  • [29] EFFECTS OF TEMPERATURE ON CO2 DEPENDENCE OF GAS EXCHANGES IN C3 AND C4 CROP PLANTS
    IMAI, K
    OKAMOTOSATO, M
    JAPANESE JOURNAL OF CROP SCIENCE, 1991, 60 (01) : 139 - 145
  • [30] PHOTOSYNTHETIC CHARACTERISTICS OF SEVERAL C3 AND C4 PLANT SPECIES GROWN UNDER DIFFERENT LIGHT INTENSITIES
    SINGH, M
    OGREN, WL
    WIDHOLM, JM
    CROP SCIENCE, 1974, 14 (04) : 563 - 566