Short-term elevated temperature and CO2 promote photosynthetic induction in the C3 plant Glycine max, but not in the C4 plant Amaranthus tricolor

被引:4
|
作者
Zheng, Tianyu [1 ,2 ]
Yu, Yuan [1 ,2 ]
Kang, Huixing [1 ,2 ]
机构
[1] Peking Univ, Coll Urban & Environm Sci, Dept Ecol, Beijing 100871, Peoples R China
[2] Peking Univ, Key Lab Earth Surface Proc, Minist Educ, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
C-4; photosynthesis; climate change; dynamic photosynthesis; fluctuating light; lightfleck; Rubisco activase; soybean; stomatal conductance; STOMATAL CONDUCTANCE; FLAVERIA-TRINERVIA; UNIFORM IRRADIANCE; LEAF TEMPERATURE; ATMOSPHERIC CO2; GLOBAL CHANGE; CARBON GAIN; LOW-LIGHT; RESPONSES; GROWTH;
D O I
10.1071/FP21363
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The continuous increases of atmospheric temperature and CO2 concentration will impact global photosynthesis. However, there are few studies considering the interaction of elevated temperature (eT) and elevated CO2 (eCO(2)) on dynamic photosynthesis, particularly for C-4 species. We examine dynamic photosynthesis under four different temperature and [CO2] treatments: (1) 400 ppm Chi 28 degrees C (CT); (2) 400 ppm Chi 33 degrees C (CT+); (3) 800 ppm Chi 28 degrees C (C+T); and (4) 800 ppm Chi 33 degrees C (C+T+). In Glycine max L., the time required to reach 50% (T-50%A) and 90% (T-90%A) of full photosynthetic induction was smaller under the CT+, C+T, and C+T+ treatments than those under the CT treatment. In Amaranthus tricolor L., however, neither T-50%A nor T-90%A was not significantly affected by eT or eCO(2). In comparison with the CT treatment, the achieved carbon gain was increased by 58.3% (CT+), 112% (C+T), and 136.6% (C+T+) in G. max and was increased by 17.1% (CT+), 2.6% (C+T) and 56.9% (C+T+) in A. tricolor. The increases of achieved carbon gain in G. max were attributable to both improved photosynthetic induction efficiency (IE) and enhanced steady-state photosynthesis, whereas those in A. tricolor were attributable to enhanced steady-state photosynthesis.
引用
收藏
页码:995 / 1007
页数:13
相关论文
共 50 条
  • [1] Simulation of the physiological and photosynthetic characteristics of C3 and C4 plants under elevated temperature and CO2 concentration
    Tian, Wei
    Su, Chenfei
    Zhang, Nan
    Zhao, Yuwei
    Tang, Long
    ECOLOGICAL MODELLING, 2024, 495
  • [2] Effects of elevated CO2 on photosynthetic traits of native and invasive C3 and C4 grasses
    Hager, Heather A.
    Ryan, Geraldine D.
    Kovacs, Hajnal M.
    Newman, Jonathan A.
    BMC ECOLOGY, 2016, 16
  • [3] Photosynthetic adaptation to salt stress in three-color leaves of a C4 plant Amaranthus tricolor
    Wang, YM
    Meng, YL
    Ishikawa, H
    Hibino, T
    Tanaka, Y
    Nii, N
    Takabe, T
    PLANT AND CELL PHYSIOLOGY, 1999, 40 (07) : 668 - 674
  • [4] Physiological and Biochemical Responses of Pseudocereals with C3 and C4 Photosynthetic Metabolism in an Environment with Elevated CO2
    Silva, Bruna Evelyn Paschoal
    Pires, Stefania Nunes
    Teixeira, Sheila Bigolin
    Lucho, Simone Ribeiro
    Fagundes, Natan da Silva
    Centeno, Larissa Herter
    Carlos, Filipe Selau
    de Souza, Fernanda Reolon
    de Avila, Luis Antonio
    Deuner, Sidnei
    PLANTS-BASEL, 2024, 13 (23):
  • [5] GLYCOLATE SYNTHESIS IN A C3, C4 AND INTERMEDIATE PHOTOSYNTHETIC PLANT TYPE
    SERVAITES, JC
    SCHRADER, LE
    EDWARDS, GE
    PLANT AND CELL PHYSIOLOGY, 1978, 19 (08) : 1399 - 1405
  • [6] Soil and plant water relations determine photosynthetic responses of C3 and C4 grasses in a semi-arid ecosystem under elevated CO2
    Lecain, DR
    Morgan, JA
    Mosier, AR
    Nelson, JA
    ANNALS OF BOTANY, 2003, 92 (01) : 41 - 52
  • [7] Performance of a generalist grasshopper on a C3 and a C4 grass:: compensation for the effects of elevated CO2 on plant nutritional quality
    Barbehenn, RV
    Karowe, DN
    Chen, Z
    OECOLOGIA, 2004, 140 (01) : 96 - 103
  • [8] Photosynthesis and yield response to elevated CO2, C4 plant foxtail millet behaves similarly to C3 species
    Li, Ping
    Li, Bingyan
    Seneweera, Saman
    Zong, Yuzheng
    Li, Frank Yonghong
    Han, Yuanhuai
    Hao, Xingyu
    PLANT SCIENCE, 2019, 285 : 239 - 247
  • [9] Performance of a generalist grasshopper on a C3 and a C4 grass: compensation for the effects of elevated CO2 on plant nutritional quality
    Raymond V. Barbehenn
    David N. Karowe
    Zhong Chen
    Oecologia, 2004, 140 : 96 - 103
  • [10] PHOTOSYNTHESIS OF A C3 GRASS AND A C4 GRASS UNDER ELEVATED CO2
    NIE, D
    HE, H
    KIRKHAM, MB
    KANEMASU, ET
    PHOTOSYNTHETICA, 1992, 26 (02) : 189 - 198