AN ITERATIVE FRAMEWORK FOR SELF-SUPERVISED DEEP SPEAKER REPRESENTATION LEARNING

被引:20
作者
Cai, Danwei [1 ]
Wang, Weiqing [1 ]
Li, Ming [2 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[2] Duke Kunshan Univ, Data Sci Res Ctr, Kunshan, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021) | 2021年
关键词
speaker recognition; speaker embedding; self-supervised learning; contrastive learning; clustering;
D O I
10.1109/ICASSP39728.2021.9414713
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we propose an iterative framework for self-supervised speaker representation learning based on a deep neural network (DNN). The framework starts with training a self-supervision speaker embedding network by maximizing agreement between different segments within an utterance via a contrastive loss. Taking advantage of DNN's ability to learn from data with label noise, we propose to cluster the speaker embedding obtained from the previous speaker network and use the subsequent class assignments as pseudo labels to train a new DNN. Moreover, we iteratively train the speaker network with pseudo labels generated from the previous step to bootstrap the discriminative power of a DNN. Speaker verification experiments are conducted on the VoxCeleb dataset. The results show that our proposed iterative self-supervised learning framework outperformed previous works using self-supervision. The speaker network after 5 iterations obtains a 61% performance gain over the speaker embedding model trained with contrastive loss.
引用
收藏
页码:6728 / 6732
页数:5
相关论文
共 50 条
  • [21] Self-Supervised Speech Representation Learning: A Review
    Mohamed, Abdelrahman
    Lee, Hung-yi
    Borgholt, Lasse
    Havtorn, Jakob D.
    Edin, Joakim
    Igel, Christian
    Kirchhoff, Katrin
    Li, Shang-Wen
    Livescu, Karen
    Maaloe, Lars
    Sainath, Tara N.
    Watanabe, Shinji
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (06) : 1179 - 1210
  • [22] Adaptive Self-Supervised Graph Representation Learning
    Gong, Yunchi
    36TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2022), 2022, : 254 - 259
  • [23] Self-supervised representation learning for trip recommendation
    Gao, Qiang
    Wang, Wei
    Zhang, Kunpeng
    Yang, Xin
    Miao, Congcong
    Li, Tianrui
    KNOWLEDGE-BASED SYSTEMS, 2022, 247
  • [24] Self-supervised Representation Learning on Dynamic Graphs
    Tian, Sheng
    Wu, Ruofan
    Shi, Leilei
    Zhu, Liang
    Xiong, Tao
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1814 - 1823
  • [25] SimGRL: a simple self-supervised graph representation learning framework via triplets
    Da Huang
    Fangyuan Lei
    Xi Zeng
    Complex & Intelligent Systems, 2023, 9 : 5049 - 5062
  • [26] A Self-Supervised Framework for Learning Biological Entities Representation by Fusing Class Information
    Li, Nan
    Yang, Zhihao
    Wang, Jian
    Lin, Hongfei
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (08) : 4178 - 4188
  • [27] Contrastive self-supervised representation learning framework for metal surface defect detection
    Zabin, Mahe
    Kabir, Anika Nahian Binte
    Kabir, Muhammad Khubayeeb
    Choi, Ho-Jin
    Uddin, Jia
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [28] Contrastive self-supervised representation learning framework for metal surface defect detection
    Mahe Zabin
    Anika Nahian Binte Kabir
    Muhammad Khubayeeb Kabir
    Ho-Jin Choi
    Jia Uddin
    Journal of Big Data, 10
  • [29] SimGRL: a simple self-supervised graph representation learning framework via triplets
    Huang, Da
    Lei, Fangyuan
    Zeng, Xi
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (05) : 5049 - 5062
  • [30] A Deep Cut Into Split Federated Self-Supervised Learning
    Przewiezlikowski, Marcin
    Osial, Marcin
    Zielinski, Bartosz
    Smieja, Marek
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT II, ECML PKDD 2024, 2024, 14942 : 444 - 459