Computational Study on the Reactions of H2O2 on TiO2 Anatase (101) and Rutile (110) Surfaces

被引:66
|
作者
Huang, Wen-Fei [1 ]
Raghunath, P. [1 ]
Lin, M. C. [1 ]
机构
[1] Natl Chiao Tung Univ, Ctr Interdisciplinary Mol Sci, Inst Mol Sci, Hsinchu 300, Taiwan
关键词
H2O2; TiO2; DFT; reaction pathway; rate constant; GENERALIZED GRADIENT APPROXIMATION; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; ADSORPTION CONFIGURATIONS; TRANSITION-STATES; TITANIUM-DIOXIDE; ELECTRONIC-PROPERTIES; BORIC-ACID; ENERGETICS; STABILITY;
D O I
10.1002/jcc.21686
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study investigates the adsorption and reactions of H2O2 on TiO2 anatase (101) and rutile (110) surfaces by first-principles calculations based on the density functional theory in conjunction with the projected augmented wave approach, using PW91, PBE, and revPBE functionals. Adsorption mechanisms of H2O2 and its fragments on both surfaces are analyzed. It is found that H2O2, H2O, and HO preferentially adsorb at the Ti-5c site, meanwhile HOO, O, and H preferentially adsorb at the (O-2c)(Ti-5c), (Ti-5c)(2), and O-2c sites, respectively. Potential energy profiles of the adsorption processes on both surfaces have been constructed using the nudged elastic band method. The two restructured surfaces, the 1/3 ML oxygen covered TiO2 and the hydroxylated TiO2, are produced with the H2O2 dehydration and deoxidation, respectively. The formation of main products, H2O(g) and the 1/3 ML oxygen covered TiO2 surface, is exothermic by 2.8 and 5.0 kcal/mol, requiring energy barriers of 0.8 and 1.1 kcal/mol on the rutile (110) and anatase (101) surface, respectively. The rate constants for the H2O2 dehydration processes have been predicted to be 6.65 x 10(-27) T-4.38 exp(-0.14 kcal mol(-1)/RT) and 3.18 x 10(-23) T-5.60 exp(-2.92 kcal mol(-1)/RT) respectively, in units of cm(3) molecule(-1) s(-1). (C) 2010 Wiley Periodicals, Inc. J Comput Chem 32: 1065-1081, 2011
引用
收藏
页码:1065 / 1081
页数:17
相关论文
共 50 条
  • [31] Computational Study of Structure and Reactivity of Oligomeric Vanadia Clusters Supported on Anatase and Rutile TiO2 Surfaces
    Fu, Hui
    Duan, Zhiyao
    Henkelman, Graeme
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (27): : 15160 - 15167
  • [32] Computational study of cysteine interaction with the rutile TiO2 (110) surface
    Muir, J. M. R.
    Idriss, H.
    SURFACE SCIENCE, 2013, 617 : 60 - 67
  • [33] Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces
    Thomas, Andrew G.
    Syres, Karen L.
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (11) : 4207 - 4217
  • [34] Reactivity of TiO2 Rutile and Anatase Surfaces toward Nitroaromatics
    Li, Shao-Chun
    Diebold, Ulrike
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (01) : 64 - +
  • [35] Surface Modification of Perfect and Hydroxylated TiO2 Rutile (110) and Anatase (101) with Chromium Oxide Nanoclusters
    Fronzi, Marco
    Nolan, Michael
    ACS OMEGA, 2017, 2 (10): : 6795 - 6808
  • [36] Selectivity in photochemical reactions on rutile TiO2(110)
    Henderson, Michael A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [37] Ethanol photoreaction over anatase TiO2(101) and rutile TiO2(110) single crystals. A combined STM and online mass spectrometry study
    Katsiev, Habib
    Harrison, George
    Wilson, Axel
    Thornton, Geoffrey
    Idriss, Hicham
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [38] Comparing Quasiparticle H2O Level Alignment on Anatase and Rutile TiO2
    Sun, Huijuan
    Mowbray, Duncan J.
    Migani, Annapaola
    Zhao, Jin
    Petek, Hrvoje
    Rubio, Angel
    ACS CATALYSIS, 2015, 5 (07): : 4242 - 4254
  • [39] The adsorption and dissociation of H2O on TiO2(110) and M/TiO2(110) (M = Pt, Au) surfaces-A computational investigation
    Peng, Shih-Feng
    Ho, Jia-Jen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (04) : 1530 - 1536
  • [40] DFT study of H2O adsorption on TiO2 (110) and SnO2 (110) surfaces
    Sahoo, Suman Kalyan
    Nigam, Sandeep
    Sarkar, Pranab
    Majumder, Chiranjib
    SOLID STATE PHYSICS, VOL 57, 2013, 1512 : 292 - 293