Thermodynamic Model of CO2 Deposition in Cold Climates

被引:12
作者
Boetcher, Sandra K. S. [1 ]
Traum, Matthew J. [2 ]
Von Hippel, Ted [3 ]
机构
[1] Embry Riddle Aeronaut Univ, Mech Engn, Daytona Beach, FL 32114 USA
[2] Univ Florida, Mech & Aerosp Engn, Gainesville, FL USA
[3] Embry Riddle Aeronaut Univ, Phys Sci, Daytona Beach, FL USA
关键词
CO2; desublimation; thermodynamics; cryogenics; Arctic; Antarctica; CARBON-DIOXIDE; CAPTURE; ENERGY;
D O I
10.1007/s10584-019-02587-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A thermodynamic model, borrowing ideas from psychrometric principles, of a cryogenic direct-air CO2-capture system utilizing a precooler is used to estimate the optimal CO2 removal fraction to minimize energy input per tonne of CO2. Energy costs to operate the system scale almost linearly with the temperature drop between the ingested air and the cryogenic desublimation temperature of CO2, driving siting to the coldest accessible locations. System performance in three Arctic/Antarctic regions where the proposed system can potentially be located is analyzed. Colder ambient temperatures provide colder system input air temperature yielding lower CO2 removal energy requirements. A case is also presented using direct-sky radiative cooling to feed colder-than-ambient air into the system. Removing greater fractions of the ingested CO2 lowers the CO2 desublimation temperature, thereby demanding greater energy input for air cooling. It therefore is disadvantageous to remove all CO2 from the processed air, and the optimal mass fraction of CO2 desublimated under this scheme is found to be 0.8-0.9. In addition, a variety of precooler effectiveness (epsilon ) values are evaluated. Increasing effectiveness reduces the required system power input. However, beyond epsilon = 0.7, at certain higher values of desublimated CO2 mass fraction, the CO2 begins to solidify inside the precooler before reaching the cryocooler. This phenomenon fouls the precooler, negating its effectiveness. Further system efficiencies can be realized via a precooler designed to capture solidified CO2 and eliminate fouling.
引用
收藏
页码:517 / 530
页数:14
相关论文
共 23 条
[1]   CO2 Snow Deposition in Antarctica to Curtail Anthropogenic Global Warming [J].
Agee, Ernest ;
Orton, Andrea ;
Rogers, John .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2013, 52 (02) :281-288
[2]   An Initial Laboratory Prototype Experiment for Sequestration of Atmospheric CO2 [J].
Agee, Ernest M. ;
Orton, Andrea .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2016, 55 (08) :1763-1770
[3]  
Baxter L., 2009, ResearchGate
[4]   Water Freezes Differently on Positively and Negatively Charged Surfaces of Pyroelectric Materials [J].
Ehre, David ;
Lavert, Etay ;
Lahav, Meir ;
Lubomirsky, Igor .
SCIENCE, 2010, 327 (5966) :672-675
[5]  
Hansen J., 2008, Open Atmosphere Science Journal, V2, P217, DOI 10.2174/1874282300802010217
[6]   RETRACTED: Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus (Retracted article. See vol. 8, art no 1431, 2017) [J].
Ji, Quanjiang ;
Chen, Peter J. ;
Qin, Guangrong ;
Deng, Xin ;
Hao, Ziyang ;
Wawrzak, Zdzislaw ;
Yeo, Won-Sik ;
Quang, Jenny Winjing ;
Cho, Hoonsik ;
Luo, Guan-Zheng ;
Weng, Xiaocheng ;
You, Qiancheng ;
Luan, Chi-Hao ;
Yang, Xiaojing ;
Bae, Taeok ;
Yu, Kunqian ;
Jiang, Hualiang ;
He, Chuan .
NATURE COMMUNICATIONS, 2016, 7
[7]   Climate strategy with CO2 capture from the air [J].
Keith, David W. ;
Ha-Duong, Minh ;
Stolaroff, Joshuah K. .
CLIMATIC CHANGE, 2006, 74 (1-3) :17-45
[8]   The urgency of the development of CO2 capture from ambient air [J].
Lackner, Klaus S. ;
Brennan, Sarah ;
Matter, Juerg M. ;
Park, A. -H. Alissa ;
Wright, Allen ;
van der Zwaan, Bob .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (33) :13156-13162
[9]  
Lemmon E, 2000, J PHYS CHEM REF DATA, V29
[10]  
Lemmon E.W., 2018, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport properties-REFPROP, Version 10.0, DOI DOI 10.18434/T4D303