Optimality conditions for approximate proper solutions in multiobjective optimization with polyhedral cones

被引:3
作者
Gutierrez, C. [1 ]
Huerga, L. [2 ]
Jimenez, B. [2 ]
Novo, V [2 ]
机构
[1] IMUVA Inst Math Univ Valladolid, Paseo Belen S-N,Campus Miguel Delibes, Valladolid 47011, Spain
[2] Univ Nacl Educ Distancia, Dept Matemat Aplicada, ETSI Ind, C Juan del Rosal 12,Ciudad Univ, E-28040 Madrid, Spain
关键词
Multiobjective optimization; Optimality conditions; Approximate proper efficiency; Polyhedral ordering cone; Nonlinear Lagrangian; Linear scalarization; KUHN-TUCKER CONDITIONS; EPSILON-SUBDIFFERENTIALS; EFFICIENCY; WEAK;
D O I
10.1007/s11750-020-00546-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we provide optimality conditions for approximate proper solutions of a multiobjective optimization problem, whose feasible set is given by a cone constraint and the ordering cone is polyhedral. A first class of optimality conditions is given by means of a nonlinear scalar Lagrangian and the second kind through a linear scalarization technique, under generalized convexity hypotheses, that lets us derive a Kuhn-Tucker multiplier rule.
引用
收藏
页码:526 / 544
页数:19
相关论文
共 26 条
[1]   On Weak and Strong Kuhn-Tucker Conditions for Smooth Multiobjective Optimization [J].
Burachik, Regina S. ;
Rizvi, M. M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 155 (02) :477-491
[2]   Vector Optimization Problems via Improvement Sets [J].
Chicco, M. ;
Mignanego, F. ;
Pusillo, L. ;
Tijs, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 150 (03) :516-529
[3]   On approximate minima in vector optimization [J].
Dutta, J ;
Vetrivel, V .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2001, 22 (7-8) :845-859
[4]  
Dutta J., 2005, Top, V13, P127
[5]   Strong Kuhn-Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problems [J].
Giorgi, G. ;
Jimenez, B. ;
Novo, V. .
TOP, 2009, 17 (02) :288-304
[6]   Approximate Karush-Kuhn-Tucker Condition in Multiobjective Optimization [J].
Giorgi, Giorgio ;
Jimenez, Bienvenido ;
Novo, Vicente .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (01) :70-89
[7]   Nonsmooth multiobjective programming: strong Kuhn-Tucker conditions [J].
Golestani, M. ;
Nobakhtian, S. .
POSITIVITY, 2013, 17 (03) :711-732
[8]  
Gopfert A., 2003, Variational Methods in Partially Ordered Spaces
[9]   On approximate efficiency in multiobjective programming [J].
Gutierrez, C. ;
Jimenez, B. ;
Novo, V. .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2006, 64 (01) :165-185
[10]  
Gutíerrez C, 2019, J NONLINEAR CONVEX A, V20, P2507