Optimality conditions for approximate proper solutions in multiobjective optimization with polyhedral cones

被引:3
作者
Gutierrez, C. [1 ]
Huerga, L. [2 ]
Jimenez, B. [2 ]
Novo, V [2 ]
机构
[1] IMUVA Inst Math Univ Valladolid, Paseo Belen S-N,Campus Miguel Delibes, Valladolid 47011, Spain
[2] Univ Nacl Educ Distancia, Dept Matemat Aplicada, ETSI Ind, C Juan del Rosal 12,Ciudad Univ, E-28040 Madrid, Spain
关键词
Multiobjective optimization; Optimality conditions; Approximate proper efficiency; Polyhedral ordering cone; Nonlinear Lagrangian; Linear scalarization; KUHN-TUCKER CONDITIONS; EPSILON-SUBDIFFERENTIALS; EFFICIENCY; WEAK;
D O I
10.1007/s11750-020-00546-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we provide optimality conditions for approximate proper solutions of a multiobjective optimization problem, whose feasible set is given by a cone constraint and the ordering cone is polyhedral. A first class of optimality conditions is given by means of a nonlinear scalar Lagrangian and the second kind through a linear scalarization technique, under generalized convexity hypotheses, that lets us derive a Kuhn-Tucker multiplier rule.
引用
收藏
页码:526 / 544
页数:19
相关论文
共 26 条
  • [1] On Weak and Strong Kuhn-Tucker Conditions for Smooth Multiobjective Optimization
    Burachik, Regina S.
    Rizvi, M. M.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 155 (02) : 477 - 491
  • [2] Vector Optimization Problems via Improvement Sets
    Chicco, M.
    Mignanego, F.
    Pusillo, L.
    Tijs, S.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 150 (03) : 516 - 529
  • [3] On approximate minima in vector optimization
    Dutta, J
    Vetrivel, V
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2001, 22 (7-8) : 845 - 859
  • [4] Dutta J., 2005, Top, V13, P127
  • [5] Strong Kuhn-Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problems
    Giorgi, G.
    Jimenez, B.
    Novo, V.
    [J]. TOP, 2009, 17 (02) : 288 - 304
  • [6] Approximate Karush-Kuhn-Tucker Condition in Multiobjective Optimization
    Giorgi, Giorgio
    Jimenez, Bienvenido
    Novo, Vicente
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (01) : 70 - 89
  • [7] Nonsmooth multiobjective programming: strong Kuhn-Tucker conditions
    Golestani, M.
    Nobakhtian, S.
    [J]. POSITIVITY, 2013, 17 (03) : 711 - 732
  • [8] Gopfert A., 2003, Variational Methods in Partially Ordered Spaces
  • [9] On approximate efficiency in multiobjective programming
    Gutierrez, C.
    Jimenez, B.
    Novo, V.
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2006, 64 (01) : 165 - 185
  • [10] Gutíerrez C, 2019, J NONLINEAR CONVEX A, V20, P2507