On Finite Non-Solvable Groups Whose Gruenberg-Kegel Graphs are Isomorphic to the Paw

被引:4
作者
Kondrat'ev, A. S. [1 ]
Minigulov, N. A. [1 ]
机构
[1] Russian Acad Sci, NN Krasovskii Inst Math & Mech, Ural Branch, 16 SKovalevskaya Str, Ekaterinburg 620108, Russia
基金
俄罗斯科学基金会;
关键词
Finite group; Non-solvable group; Gruenberg-Kegel graph; The paw; PRIME GRAPHS; ORDER; REPRESENTATIONS; COMPONENTS; ELEMENTS;
D O I
10.1007/s40304-021-00242-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Gruenberg-Kegel graph (or the prime graph) G (G) of a finite group G is a graph, in which the vertex set is the set of all prime divisors of the order of G and two different vertices p and q are adjacent if and only if there exists an element of order pq in G. The paw is a graph on four vertices whose degrees are 1, 2, 2, 3. We consider the problem of describing finite groups whose Gruenberg-Kegel graphs are isomorphic as abstract graphs to the paw. For example, the Gruenberg-Kegel graph of the alternating group A(10) of degree 10 is isomorphic as abstract graph to the paw. In this paper, we describe finite non-solvable groups G whose Gruenberg-Kegel graphs are isomorphic as abstract graphs to the paw in the case when G has no elements of order 6 or the vertex of degree 1 of G (G) divides the order of the solvable radical of G.
引用
收藏
页码:653 / 667
页数:15
相关论文
共 36 条
  • [1] Finite Groups Whose Prime Graphs Do Not Contain Triangles. II
    Alekseeva, O. A.
    Kondrat'ev, A. S.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 296 (01) : S19 - S30
  • [2] Finite Groups Whose Prime Graphs Do Not Contain Triangles. I
    Alekseeva, O. A.
    Kondrat'ev, A. S.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 295 (01) : S11 - S20
  • [3] Aschbacher M., 2000, FINITE GROUP THEORY
  • [4] Bray JN, 2013, LOND MATH S, V407, P1, DOI 10.1017/CBO9781139192576
  • [5] Conway J.H., 1985, Atlas of Finite Groups
  • [6] C55-groups
    Dolfi, S
    Jabara, E
    Lucido, MS
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (06) : 1053 - 1062
  • [7] Finite p'-semiregular groups
    Fleischmann, P
    Lempken, W
    Tiep, PH
    [J]. JOURNAL OF ALGEBRA, 1997, 188 (02) : 547 - 579
  • [8] Gorenstein D., 1968, Finite Groups
  • [9] FINITE ALMOST SIMPLE GROUPS WHOSE GRUENBERG-KEGEL GRAPHS COINCIDE WITH GRUENBERG-KEGEL GRAPHS OF SOLVABLE GROUPS
    Gorshkov, I. B.
    Maslova, N., V
    [J]. ALGEBRA AND LOGIC, 2018, 57 (02) : 115 - 129
  • [10] A characterization of the prime graphs of solvable groups
    Gruber, Alexander
    Keller, Thomas Michael
    Lewis, Mark L.
    Naughton, Keeley
    Strasser, Benjamin
    [J]. JOURNAL OF ALGEBRA, 2015, 442 : 397 - 422