High-Nanofiller-Content Graphene Oxide-Polymer Nanocomposites via Vacuum-Assisted Self-Assembly

被引:486
作者
Putz, Karl W. [1 ]
Compton, Owen C. [2 ]
Palmeri, Marc J. [3 ]
Nguyen, SonBinh T. [2 ]
Brinson, L. Catherine [1 ,3 ]
机构
[1] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
Coulombic attractions - Degree of order - Homogeneous polymers - Layer-by-layer assemblies - Poly (vinyl alcohol) (PVA) - Poly(methyl methacrylate) (PMMA) - Polymer nanocomposite - PVA nanocomposites;
D O I
10.1002/adfm.201000723
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Highly ordered, homogeneous polymer nanocomposites of layered graphene oxide are prepared using a vacuum-assisted self-assembly (VASA) technique. In VASA, all components (nanofiller and polymer) are pre-mixed prior to assembly under a flow, making it compatible with either hydrophilic poly(vinyl alcohol) (PVA) or hydrophobic poly(methyl methacrylate) (PM MA) for the preparation of composites with over 50 wt% filler. This process is complimentary to layer-by-layer assembly, where the assembling components are required to interact strongly (e.g., via Coulombic attraction). The nanosheets within the VASA-assembled composites exhibit a high degree of order with tunable intersheet spacing, depending on the polymer content. Graphene oxide-PVA nanocomposites, prepared from water, exhibit greatly improved modulus values in comparison to films of either pure PVA or pure graphene oxide. Modulus values for graphene oxide PM MA nanocomposites, prepared from dimethylformamide, are intermediate to those of the pure components. The differences in structure, modulus, and strength can be attributed to the gallery composition, specifically the hydrogen bonding ability of the intercalating species
引用
收藏
页码:3322 / 3329
页数:8
相关论文
共 35 条
  • [1] BANSAL A, 2005, NAT MATER, V4, P9
  • [2] Controlling the thermornechanical properties of polymer nanocomposites by tailoring the polymer-particle interface
    Bansal, Amitabh
    Yang, Hoichang
    Li, Chunzhao
    Benicewicz, Rian C.
    Kumar, Sanat K.
    Schadler, Linda S.
    [J]. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (20) : 2944 - 2950
  • [3] Bauhofer W., 2009, COMPOS SCI TECHNOL, V69, P10
  • [4] Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide
    Cai, Weiwei
    Piner, Richard D.
    Stadermann, Frank J.
    Park, Sungjin
    Shaibat, Medhat A.
    Ishii, Yoshitaka
    Yang, Dongxing
    Velamakanni, Aruna
    An, Sung Jin
    Stoller, Meryl
    An, Jinho
    Chen, Dongmin
    Ruoff, Rodney S.
    [J]. SCIENCE, 2008, 321 (5897) : 1815 - 1817
  • [5] CHEN H, 2008, ADV MATER, V20, P18
  • [6] COMPTON C, 2010, ADV MATER, V22, P8
  • [7] Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials
    Compton, Owen C.
    Nguyen, SonBinh T.
    [J]. SMALL, 2010, 6 (06) : 711 - 723
  • [8] DEBOER JH, 1958, P K NED AKAD WER P B, V61
  • [9] Preparation and characterization of graphene oxide paper
    Dikin, Dmitriy A.
    Stankovich, Sasha
    Zimney, Eric J.
    Piner, Richard D.
    Dommett, Geoffrey H. B.
    Evmenenko, Guennadi
    Nguyen, SonBinh T.
    Ruoff, Rodney S.
    [J]. NATURE, 2007, 448 (7152) : 457 - 460
  • [10] DIMARZIO EA, 1995, J RES NATL I STAN TE, V100, P2