On certain Glasner sets

被引:1
|
作者
Haili, HK [1 ]
Nair, R [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, Minden 11800, Penang, Malaysia
关键词
D O I
10.1017/S0308210500002705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sequence of integers S is called Glasner if, given any epsilon > 0 and any infinite subset A of T = R/Z, and given y in T, we can find an integer n is an element of S such that there is an element of {nx : x is an element of A} whose distance to y is not greater than epsilon. In this paper we show that if a sequence of integers is uniformly distributed in the Bohr compactification of the integers, then it is also Glasner. The theorem is proved in a quantitative form.
引用
收藏
页码:849 / 853
页数:5
相关论文
共 50 条
  • [1] Glasner sets and polynomials in primes
    Nair, R
    Velani, SL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (10) : 2835 - 2840
  • [2] Matthias Glasner
    不详
    POSITIF, 2008, (564): : 15 - 15
  • [3] On certain hyperbolic sets
    D. V. Anosov
    Mathematical Notes, 2010, 87 : 608 - 622
  • [4] On certain hyperbolic sets
    Anosov, D. V.
    MATHEMATICAL NOTES, 2010, 87 (5-6) : 608 - 622
  • [5] CERTAIN SALEM SETS
    KAHANE, JP
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1970, 21 (1-2): : 87 - &
  • [6] ON SUMSET OF CERTAIN SETS
    HEGYVARI, N
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1994, 45 (1-2): : 115 - 122
  • [7] DETERMINATION OF SETS BY SETS OF SUMS OF A CERTAIN ORDER
    GORDON, B
    FRAENKEL, AS
    STRAUS, EG
    PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (01) : 187 - &
  • [8] BOUNDEDNESS OF CERTAIN ANALYTIC SETS
    MAULDIN, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (04): : A450 - A450
  • [9] COMPACTNESS OF CERTAIN NONLINEAR SETS
    PODGAEV, AG
    DOKLADY AKADEMII NAUK SSSR, 1985, 285 (05): : 1064 - 1066
  • [10] On Hilbert Cubes in Certain Sets
    N. Hegyvári
    A. Sárközy
    The Ramanujan Journal, 1999, 3 : 303 - 314