Compartment specific changes of the antioxidative status in Arabidopsis thaliana during salt stress

被引:24
|
作者
Koffler, Barbara Eva [1 ]
Luschin-Ebengreuth, Nora [1 ]
Zechmann, Bernd [2 ]
机构
[1] Graz Univ, Inst Plant Sci, A-8010 Graz, Austria
[2] Baylor Univ, Ctr Microscopy & Imaging, Waco, TX 76798 USA
基金
奥地利科学基金会;
关键词
Arabidopsis; Ascorbate; Glutathione; Salt stress; ASCORBATE-GLUTATHIONE CYCLE; SUBCELLULAR-DISTRIBUTION; OXIDATIVE STRESS; MITOCHONDRIA; TOLERANCE; DEFENSE; PEROXISOMES; RESISTANCE; SYSTEMS; PLANTS;
D O I
10.1007/s12374-014-0264-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The compartment specific importance of ascorbate and glutathione was investigated during salt stress in Arabidopsis Col-0 and mutants deficient in ascorbate and glutathione (vtc2-1, pad2-1). This study demonstrated that higher sensitivity of the vtc2-1 mutants which showed leaf necrosis and lower biomass at the beginning of the salt stress experiment was correlated with lower basal ascorbate contents and a decrease in ascorbate contents in mitochondria (67%), peroxisomes (68%) and the cytosol (38%). Higher tolerance of pad2-1 mutants to salt stress throughout the first 10 days of the experiment could be correlated to a massive increase of glutathione contents (up to 740% in nuclei) in all cell compartments. A similar situation was found for wildtype plants which showed higher tolerance to salt stress at the beginning of the experiment which could be correlated with a strong increase of glutathione contents in mitochondria (39%), chloroplasts (up to 26%) and peroxisomes (up to 84%) indicating an important role of glutathione in the protection of these cell compartments against salt stress. Summing up, the results demonstrate that higher tolerance to salt stress of wildtype plants and pad2-1 mutants at the beginning of the experiment could be correlated to increased glutathione contents which could not be found in vtc2-1 mutants which in addition showed lower ascorbate contents and higher sensitivity to salt stress.
引用
收藏
页码:8 / 16
页数:9
相关论文
共 50 条
  • [21] Early photosynthetic response of Arabidopsis thaliana to temperature and salt stress conditions
    Martinez-Penalver, A.
    Grana, E.
    Reigosa, M. J.
    Sanchez-Moreiras, A. M.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2012, 59 (05) : 640 - 647
  • [22] The polyamine spermine protects against high salt stress in Arabidopsis thaliana
    Yamaguchi, Koji
    Takahashi, Yoshihiro
    Berberich, Thomas
    Imai, Akihiko
    Miyazaki, Atsushi
    Takahashi, Taku
    Michael, Anthony
    Kusano, Tomonobu
    FEBS LETTERS, 2006, 580 (30) : 6783 - 6788
  • [23] Phenotypic and Methylome Responses to Salt Stress in Arabidopsis thaliana Natural Accessions
    Lin, Xiaohe
    Zhou, Ming
    Yao, Jing
    Li, Qingshun Q.
    Zhang, Yuan-Ye
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [24] Salt stress response in Arabidopsis thaliana plants with defective jasmonate signaling
    T. O. Yastreb
    Yu. E. Kolupaev
    N. V. Shvidenko
    A. A. Lugovaya
    A. P. Dmitriev
    Applied Biochemistry and Microbiology, 2015, 51 : 451 - 454
  • [25] OsBTBZ1 Confers Salt Stress Tolerance in Arabidopsis thaliana
    Saputro, Triono B.
    Jakada, Bello H.
    Chutimanukul, Panita
    Comai, Luca
    Buaboocha, Teerapong
    Chadchawan, Supachitra
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)
  • [26] The enhancement of salt stress tolerance by salicylic acid pretreatment in Arabidopsis thaliana
    Yu, L-L
    Liu, Y.
    Zhu, F.
    Geng, X-X
    Yang, Y.
    He, Z-Q
    Xu, F.
    BIOLOGIA PLANTARUM, 2020, 64 : 150 - 158
  • [27] AtPHB2 regulates salt stress response in Arabidopsis thaliana
    Chang, Xu
    Zhu, Guoqing
    Chen, Shiya
    Sun, Dan
    He, Hao
    Li, Guoliang
    Xu, Yang
    Ren, Ziqi
    Xu, Chang
    Jin, Shumei
    PLANT GROWTH REGULATION, 2021, 94 (01) : 23 - 32
  • [28] Early photosynthetic response of Arabidopsis thaliana to temperature and salt stress conditions
    A. Martínez-Peñalver
    E. Graña
    M. J. Reigosa
    A. M. Sánchez-Moreiras
    Russian Journal of Plant Physiology, 2012, 59 : 640 - 647
  • [29] Salt stress response in Arabidopsis thaliana plants with defective jasmonate signaling
    Yastreb, T. O.
    Kolupaev, Yu. E.
    Shvidenko, N. V.
    Lugovaya, A. A.
    Dmitriev, A. P.
    APPLIED BIOCHEMISTRY AND MICROBIOLOGY, 2015, 51 (04) : 451 - 454
  • [30] Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana
    Di Fan
    Sowmyalakshmi Subramanian
    Donald L. Smith
    Scientific Reports, 10