Morita equivalence for crossed products by Hilbert C*-bimodules

被引:78
作者
Abadie, B
Eilers, S
Exel, R
机构
[1] Kobenhavns Univ, Inst Matemat, DK-2100 Copenhagen O, Denmark
[2] Univ Sao Paulo, Dept Matemat, BR-05508900 Sao Paulo, Brazil
关键词
crossed products; Morita equivalence; C*-algebras; Hilbert C*-bimodules; spectral subspaces; Pimsner-Voiculescu sequence;
D O I
10.1090/S0002-9947-98-02133-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of the crossed product A x(X) Z of a C*-algebra A by a Hilbert C*-bimodule X. It is shown that given a C*-algebra B which carries a semi-saturated action of the circle group (in the sense that B is generated by the spectral subspaces B-0 and B-1), then B is isomorphic to the crossed product B-0 x B-1 Z. We then present our main result, in which we show that the crossed products A x(X) Z and B x(Y) Z, are strongly Morita equivalent to each other, provided that A and B are strongly Morita equivalent under an imprimitivity bimodule M satisfying X x(A) M similar or equal to M x(B) Y as A - B Hilbert C*-bimodules. We also present ii six-term exact sequence for K-groups of crossed products by Hilbert C*-bimodules.
引用
收藏
页码:3043 / 3054
页数:12
相关论文
共 50 条
  • [31] On connections between Morita semigroups and strong Morita equivalence
    Lepik, Alvin
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (05) : 1862 - 1873
  • [32] CONSTRUCTION OF GLOBALIZATIONS FOR PARTIAL ACTIONS ON RINGS, ALGEBRAS, C*-ALGEBRAS AND HILBERT BIMODULES
    Ferraro, Damian
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (01) : 181 - 217
  • [33] Fair semigroups and Morita equivalence
    Valdis Laan
    László Márki
    Semigroup Forum, 2016, 92 : 633 - 644
  • [34] Morita Equivalence for Factorisable Semigroups
    Yu Qun Chen
    K. P. Shum
    Acta Mathematica Sinica, 2001, 17 : 437 - 454
  • [35] Morita equivalence of finite semigroups
    Ülo Reimaa
    Valdis Laan
    Lauri Tart
    Semigroup Forum, 2021, 102 : 842 - 860
  • [36] Fair semigroups and Morita equivalence
    Laan, Valdis
    Marki, Laszlo
    SEMIGROUP FORUM, 2016, 92 (03) : 633 - 644
  • [37] Morita equivalence of factorizable semigroups
    Laan, Valdis
    Reimaat, Ulo
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (04) : 723 - 741
  • [38] Morita Equivalence for Rings with Involution
    Ara P.
    Algebras and Representation Theory, 1999, 2 (3) : 227 - 247
  • [39] Morita Equivalence for Factorisable Semigroups
    Yu Qun CHEN Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2001, 17 (03) : 437 - 454
  • [40] Morita equivalence of finite semigroups
    Reimaa, Ulo
    Laan, Valdis
    Tart, Lauri
    SEMIGROUP FORUM, 2021, 102 (03) : 842 - 860