Laser additive manufacturing of bimetallic structure from Ti-6Al-4V to Ti-48Al-2Cr-2Nb via vanadium interlayer

被引:32
作者
Liu, Zhanqi [1 ]
Ma, Ruixin [1 ]
Xu, Guojian [1 ]
Wang, Wei [2 ]
Liu, Jin [1 ]
机构
[1] Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R China
[2] Shenyang Univ Technol, Sch Mech Engn, Shenyang 110870, Peoples R China
关键词
Laser additive manufacturing; Ti/TiAl bimetallic structure; Interfaces; Microstructure; Brittle phases; Tensile strength; GAMMA-TIAL ALLOY; MICROSTRUCTURE EVOLUTION; MECHANICAL-PROPERTIES; DEFORMATION-BEHAVIOR; TEMPERATURE; FABRICATION; DEPOSITION;
D O I
10.1016/j.matlet.2019.127210
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As a potential candidate material, Ti6Al4V (TC4)/Ti48Al2Cr2Nb (TiAl) bimetallic structure (BS) material has a good development prospects in the field of aerospace engineering, and has a broad application prospects for the integrated manufacture of aero-engine turbine blades (TiAl) and turbine disks (TC4). However, via the direct bonding of TC4/TiAl BS, it is easy to produce brittle intermetallic compounds which increases the crack sensitivity. Therefore, to a certain extent, the application of TC4/TiAl BS is limited. In this study, we use laser additive manufacturing (LAM) technology to prepare the TC4/TiAl BS via a V interlayer, which further limits the formation of a brittle phase. The experimental results show that the V interlayer can effectively limit the formation of the brittle phase (Ti3Al), which reduces the crack sensitivity of the formed parts, and forms a good metallurgical joint at the TC4/TiAl BS interfaces. Results of room temperature tensile tests reveal that the tensile strength and elongation of the BS specimens are similar to 476 MPa, and similar to 2.8% respectively, which means that the strength of the joint exceeded that of the deposited TiAl alloy without the V interlayer. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Laser and TIG welding of additive manufactured Ti-6Al-4V parts
    Sen, Murat
    Kurt, Mustafa
    MATERIALS TESTING, 2022, 64 (05) : 656 - 666
  • [42] Hydrogen trapping in additive manufactured Ti-6Al-4V alloy
    Metalnikov, Polina
    Eliezer, Dan
    Ben-Hamu, Guy
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 811 (811):
  • [43] In situ deformation behavior of laser additive manufacturing Ti-6Al-4V alloy at room and high temperatures: A review
    Abbas, Mujahid
    Hussain, Wajid
    Majeed, Afraz Hussain
    Jalili, Bahram
    Vivas-Cortez, Miguel
    Kallel, Imen Ali
    AIP ADVANCES, 2025, 15 (02)
  • [44] Microstructure characterisation of Ti-6Al-4V from different additive manufacturing processes
    Neikter, M.
    Akerfeldt, P.
    Pederson, R.
    Antti, M-L
    INTERNATIONAL MATERIALS RESEARCH MEETING IN THE GREATER REGION: CURRENT TRENDS IN THE CHARACTERISATION OF MATERIALS AND SURFACE MODIFICATION, 2017, 258
  • [45] Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy
    Chen Zhanxing
    Ding Hongsheng
    Liu Shiqiu
    Chen Ruirun
    Guo Jingjie
    Fu Hengzhi
    ACTA METALLURGICA SINICA, 2017, 53 (05) : 583 - 591
  • [46] Trends in Solidification Grain Size and Morphology for Additive Manufacturing of Ti-6Al-4V
    Gockel, Joy
    Sheridan, Luke
    Narra, Sneha P.
    Klingbeil, Nathan W.
    Beuth, Jack
    JOM, 2017, 69 (12) : 2706 - 2710
  • [47] Solidification microstructure simulation of Ti-6Al-4V in metal additive manufacturing: A review
    Li, Jinghao
    Zhou, Xianglin
    Brochu, Mathieu
    Provatas, Nikolas
    Zhao, Yaoyao Fiona
    ADDITIVE MANUFACTURING, 2020, 31
  • [48] MACHINING BEHAVIOR AND MATERIAL PROPERTIES IN ADDITIVE MANUFACTURING TI-6AL-4V PARTS
    Gong, Xi
    Manogharan, Guha
    PROCEEDINGS OF THE ASME 2020 15TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2020), VOL 1A, 2020,
  • [49] Finite Element Simulation of Hybrid Manufacturing of Ti-6Al-4V by Wire Arc Additive Manufacturing and Rolling
    Ju Hongtao
    Xu Dongsheng
    Shan Feihu
    Yang Rui
    RARE METAL MATERIALS AND ENGINEERING, 2020, 49 (03) : 878 - 882
  • [50] High-temperature oxidation behaviour of laser in situ synthesised Ti-Al-Cr-Nb alloy coating on Ti-6Al-4V
    Chen, Ting-Ting
    Shi, Yong-Jun
    Li, Xian-Fa
    Wang, Shu-Yao
    Zhao, Xiao-Yu
    MATERIALS AT HIGH TEMPERATURES, 2022, 39 (04) : 290 - 300