Rapid and efficient removal of fluoride ions from aqueous solution using a polypyrrole coated hydrous tin oxide nanocomposite

被引:52
|
作者
Parashar, Kamya [1 ]
Ballav, Niladri [1 ]
Debnath, Sushanta [2 ]
Pillay, Kriveshini [1 ,3 ]
Maity, Arjun [1 ,3 ]
机构
[1] Univ Johannesburg, Dept Appl Chem, Johannesburg, South Africa
[2] Saha Inst Nucl Phys, Kolkata, W Bengal, India
[3] CSIR, DSTCSIR Natl Ctr Nanostruct Mat, ZA-0001 Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
Polypyrrole; Hydrous tin oxide; Adsorption; Fluoride; Isotherms; Rapid kinetics; DRINKING-WATER; MIXED-OXIDE; ADSORPTION-KINETICS; CONDUCTING POLYMERS; ACTIVATION-ENERGY; GRAPHENE OXIDE; ADSORBENT; DEFLUORIDATION; THERMODYNAMICS; PERFORMANCE;
D O I
10.1016/j.jcis.2016.05.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polypyrrole/hydrous tin oxide nanocomposites (PPy/HSnO NC 1, 2, 3, 4 and 5) were synthesized through encapsulating HSnO by the PPy via an in situ polymerization for fluoride removal. The optimized adsorbent i.e. PPy/HSnO NC 3 was characterized using FE-SEM, HR-TEM, ATR-FTIR, XRD, BET, TGA and zeta sizer. Microscopic images revealed the encapsulation of HSnO by precipitating PPy during polymerization. The FTIR and XRD studies confirmed the presence of both constituents. The BET surface area and pH(pzc) of the adsorbent were estimated to be 65.758 m(2)/g and 7.6, respectively. The fluoride adsorption followed pseudo-second-order model and was commendably rapid. The monolayer adsorption capacity was found to be 26.16-28.99 mg/g at pH 6.5 +/- 0.1. The thermodynamic parameters indicated the sorption of F- was spontaneous, endothermic and that physisorption occurred. The calculated activation energy (E-a similar to 20.05 kJ/mol) provided further evidence of a physisorption mechanism. Moreover, the adsorbent performed very well over a considerably wide pH range of 3.5-8.5 and in the presence of other coexisting ions. The regeneration of the F- laden PPy/HSnO NC 3 showed a high desorption efficiency of 95.81% up to 3 cycles. Ground water tested results also demonstrate the potential utility of the PPy/HSnO NC as an effective adsorbent. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:103 / 118
页数:16
相关论文
共 50 条
  • [41] Removal of Fluoride from Aqueous Solution Using Shrimp Shell Residue as a Biosorbent after Astaxanthin Recovery
    Li, Yan
    Zhang, Lili
    Liao, Minru
    Huang, Chao
    Gao, Jing
    MOLECULES, 2023, 28 (09):
  • [42] Highly Efficient Adsorption and Removal of Amoxicillin from Aqueous Solution by Magnetic Graphene Oxide Nanocomposite
    Mostafapour, Ferdos Kord
    Bazi, Maryam
    Siddiqui, Shaziya Haseeb
    Bagheri, Hossein
    Balarak, Davoud
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL INVESTIGATION, 2021, 11 (04) : 384 - 388
  • [43] Simultaneous Removal of Fluoride and Arsenic from Aqueous Solution using Activated Red Mud
    Guo, Huaming
    Yang, Lijin
    Zhou, Xiaoqian
    SEPARATION SCIENCE AND TECHNOLOGY, 2014, 49 (15) : 2412 - 2425
  • [44] Effective removal of fluoride ions from aqueous solution by marine microalgae as natural biosorbent
    Kavisri, M.
    Abraham, Marykutty
    Moovendhan, Meivelu
    CHEMOSPHERE, 2023, 313
  • [45] Efficient adsorptive removal of Co2+ from aqueous solution using graphene oxide
    Zhuang, Shuting
    Wang, Jianlong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (45) : 101433 - 101444
  • [46] Evaluation of Phosphate Removal Efficiency from Aqueous Solution by Polypyrrole/BOF Slag Nanocomposite
    Islam, Mahamudur
    Mishra, Sulagna
    Swain, Sanjaya Kumar
    Patel, Rajkishore
    Dey, R. K.
    Naushad, Mu.
    SEPARATION SCIENCE AND TECHNOLOGY, 2014, 49 (17) : 2668 - 2680
  • [47] Efficient removal of Cs(I) from aqueous solution using graphene oxide
    Xing, Min
    Zhuang, Shuting
    Wang, Jianlong
    PROGRESS IN NUCLEAR ENERGY, 2020, 119
  • [48] Effects of addition of cationic ligands in hydrous bismuth oxide on removal of fluoride from aqueous solutions
    Ranjan, M.
    Srivastav, A. L.
    Shaktibala
    CURRENT SCIENCE, 2015, 108 (09): : 1673 - 1682
  • [49] REMOVAL OF FLUORIDE FROM AQUEOUS SOLUTION BY NICKEL OXIDE NANOPARTICLES: EQUILIBRIUM AND KINETIC STUDIES
    Igwegbe, Chinenye Adaobi
    Rahdar, Somayeh
    Rahdar, Abbas
    Mahvi, Amir Hossein
    Ahmadi, Shahin
    Banach, Artur Marek
    FLUORIDE, 2019, 52 (04) : 569 - 579
  • [50] Efficient Removal of Fluoride Using Polypyrrole-Modified Biochar Derived from Slow Pyrolysis of Pomelo Peel: Sorption Capacity and Mechanism
    Wang, Jianguo
    Chen, Nan
    Li, Miao
    Feng, Chuanping
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2018, 26 (04) : 1559 - 1572