The inverse problem for perturbed harmonic oscillator on the half-line with a dirichlet boundary condition

被引:18
作者
Chelkak, Dmitry
Korotyaev, Evgeny
机构
[1] St Petersburg State Univ, Math Mech Fac, Dept Math Anal, St Petersburg 198504, Russia
[2] Humboldt Univ, Inst Math, D-12489 Berlin, Germany
来源
ANNALES HENRI POINCARE | 2007年 / 8卷 / 06期
关键词
SCHRODINGER-OPERATORS; UNIQUENESS;
D O I
10.1007/s00023-007-0330-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the perturbed harmonic oscillator T-D psi = -psi'' + x(2) psi + q(x)psi, psi(0) = 0, in L-2(R+), where q is an element of H+ = {q', xq is an element of L-2(R+)} is a real-valued potential. We prove that the mapping q -> spectral data characterization of the set of spectral data which corresponds to q is an element of H+ is given.
引用
收藏
页码:1115 / 1150
页数:36
相关论文
共 13 条
[1]  
[Anonymous], J MATH SCI NY
[2]  
Bateman H., 1953, Higher Transcendental Functions, V2
[3]   Inverse problem for harmonic oscillator perturbed by potential, characterization [J].
Chelkak, D ;
Kargaev, P ;
Korotyaev, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (01) :133-196
[4]   An inverse problem for an harmonic oscillator perturbed by potential: Uniqueness [J].
Chelkak, D ;
Kargaev, P ;
Korotyaev, E .
LETTERS IN MATHEMATICAL PHYSICS, 2003, 64 (01) :7-21
[5]   Connectedness of the isospectral manifold for one-dimensional half-line Schrodinger operators [J].
Gesztesy, F ;
Simon, B .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :361-365
[6]   Uniqueness theorems in inverse spectral theory for one-dimensional Schrodinger operators [J].
Gesztesy, F ;
Simon, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :349-373
[7]  
Kato T., 1995, Perturbation Theory for Linear Operators
[8]   Spectral asymptotics of the harmonic oscillator perturbed by bounded potentials [J].
Klein, M ;
Korotyaev, E ;
Pokrovski, A .
ANNALES HENRI POINCARE, 2005, 6 (04) :747-789
[9]  
Levitan B.M., 1988, Math. USSR-SB, V60, P77, DOI DOI 10.1070/SM1988V060N01ABEH003157
[10]  
MCKEAN MP, 1981, COMMUN MATH PHYS, V82, P471